Скачать книгу

Малевич. Введение в теорию прибавочного элемента в живописи. К. Malevich. Die gegendstandlose Welt. Mainz und Berlin, 1980. S. 27–30.

      5

      Karsten Harries. Das befreite Nichts. Durchblicke. Martin Heidegger zum 80. Geburtstag. Frankfurt am Main, 1970. S. 46; о значении Белого у Малевича: Ibid. S. 44.

      6

      К. Malevich. The Question of Imitative Art. Essays on Art. Vol. 1. P. 174.

      7

      K. Malevich. God is not cast down. Essays on Art. Vol. 1. P. 188.

      8

      Ibid. P. 194.

      9

      K. Malevich. Die gegendstandlose Welt (оригинал). Ibid. S. 7.

      10

      Ibid. S. 12.

      11

      В. Хлебников. Закон поколений. Велимир Хлебников, Творения. Москва, 1986. С. 642–652.

      12

      В. Хлебников. Наша Основа. B. Хлебников, Творения. Ук. изд. C. 627–628.

      13

      Ср.: Детство и юность Казимира Малевича. Главы из автобиографии художника. К истории русского авангарда. Стокгольм, 1976.

      14

      Вл. С. Соловьев. Общий смысл искусства. Вл. Соловьев. Собр. соч. (репринт). Брюссель. Т. 6. С. 85.

      15

      Б. Арватов. Речетворчество. По поводу заумной поэзии. ЛЕФ. № 2. Москва-Петроград, 1923. С. 79–91.

      16

      Об истории русского конструктивизма см.: Chr. Lodder, Russian Construktivism. New-Haven-London, 1983.

      17

      Тексты к полемике в кн.: Hubertus Gaßner/Eckhart Gillen, Zwischen Revolutionskunst und Sozialistischem Realismus. Köln, 1979. S. 52–56.

      18

      Chr. Lodder. Ibid, P. 98–99.

/9j/4AAQSkZJRgABAQEBLAEsAAD/2wBDAAIBAQIBAQICAgICAgICAwUDAwMDAwYEBAMFBwYHBwcGBwcICQsJCAgKCAcHCg0KCgsMDAwMBwkODw0MDgsMDAz/2wBDAQICAgMDAwYDAwYMCAcIDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCAMtAjoDAREAAhEBAxEB/8QAHQABAAICAwEBAAAAAAAAAAAAAAcIBgkBBAUDAv/EAF4QAAEDAwIDBQMFCQgPBQYHAAABAgMEBREGBwgSIQkTMUFRImFxFDI4dYEVI0KCkbGys7QzN1Jyc3SSoRYYGSQlNDZDVVZilMPR0zV2k5XSFyZTVIPERKOkweHw8f/EAB0BAQABBAMBAAAAAAAAAAAAAAAGBAUHCAECAwn/xABUEQEAAQIDBAUGCQgGBwgCAwAAAQIDBAURBhIhMQdBUWFxCBMigZGxFDI0NkJyocHRFTNic5Ky4fAjNVJTgrMWFxgkosLSQ1RjdIOTw/ElVUSj0//aAAwDAQACEQMRAD8ApGR9OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9fTG39+1tFM+zWS7XZlMqNldR0kk6RKqZRHK1Fwqoi+PoWrMs9y3L5ppx+IotTVy366addOemsxro9beHu3ONumZ8I1dy67P6tsNtnra7S+oqKjpmc8089umjjib6ucrcInvUpMLtZkmJu04fD4y1XXVOkU03KJmZ7IiJ1mXevCX6Y3qqJiPCWOeBIFOAAAAAAAAAAADILJtNqrU1rirrbpq/3Cimz3dRTW+WWKTCqi4c1qouFRU6eaFixu1OTYO9OHxeLtW64501XKaZjXjGsTMTGscXvRhb1dO9RRMx4S6uptBX3RSQrebLdbSlTzJCtZSSQd7y4zy8yJnGUzj1QqctzzLsw3owGIou7umu5VTVpry10mdNdJ0dbti5b/OUzGvbGjyS6PIAAAPrRUU1yrIqemhlqKid6RxRRMV75HKuEa1qdVVV8kPO9et2rdV27VFNNMazMzpERHOZmeERHXLmImZ0jjL9stNVJBVStpqh0dCqJUvSNytp8uVqc649nLkVEzjqmPE6TirMVUUTXETX8WNY1q0jWd3t0jjOnVx5Od2rjOnLm657uoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs9wT0WpLlw5br0+kHVjNSyyUSW9aSVIpkkw7PK5VREXl5vFTXHpgvZVa2ryW7nkUzhoi7v70TNOmsc4iJmeOnUkeT03asJeix8bhpoxfduw8QVg0XXJq2TXEun6iJW1iS1SVNMseeqSciuw3onj0JPstjejPE4+3OSxh4xFM+hpTuVb36O9Eaz4cVNiqMzptz5/e3evrj16IKRqveiIiucq4RETKqpmaZiI4rKlxnCJV2xKWk1BrLROltQV8bJaezXKtelVh/wAxJFY1WRK7p0cvmYunpTsXt+/lmAxGJw9EzFV63RG56Pxt2JqiquI65pjwXT8l1RpTcuU01T1TPH19iO9wdAXba7WFdYb3SrR3O3vRk0fMj06oio5rk6OaqKioqeJPMjzzBZxgbeZZfXv2rkaxPLlOkxMTxiYnhMSob9iuzXNu5GkwzvSPCfdtSba2vWNZf9L2DTNydKx1bcap7PkzmPViNcxGqrnPci8rWZXCKq4wQvNOk7BYXNr2Q4fDXr+Kt7s7lumJ3oqiKtYqmdIimJjemrTjMRGqstZZXXZi/VVFNM9cy8HeHYy47PstVXJX2q92S/ROmtt1tkqyUtWjVRHImURWuRV6tX/ni9bKbZ4XPJvWaLddm/YmIuWrkRFdOvKeEzExPVMfhr44vBVWN2ZmKqauUxyl0dD7T3HX2kNV3qjmo46XR9GyurWzPckkjHvViJGiIqKuU81T4lbnO0+Fy3HYLL79NU14uuaKJiI0iYjWd7WY0jj1RPg6WcLVct13KeVEaz/B2NJ7IXvWG2GpdXU7YIbNpdGfKJJlc1ahznI1WRYaqOc3LVciqmEcnqU+abZZfgc3wmR3Zmb+J13YjSd2IiZ1r46xE6TFOkTrMT2ObWDuXLNd+Pi08/4Md03pyu1dqCjtVtppay4XCZtPTwRp7Ur3LhE//leiJlVL/mGYYfA4W5jcXXFFu3E1VTPKIjnP8Oczwji8bduq5XFFEazKTtQcJy6fguNO/cDb2S/2iGSastCXB7Zoe7arnsSRW9257UT5qLnPQx1gek6MTVau05Ziow92Yii75uJpnenSmd2Kt6KZ/tTGmnFX3Ms3ImJuU70c41/mNUR+KfEyitg3xQELMag3K1BtpwGbZ1Onr1crLUVV2roZpKOZYnSMR0zkauPFM9TXfA7PZZm3SRm9rNMPRepptWpiK41iJ0txrHfpwSGvEXbOW2arVUxOs8vWgbXm7ep9y4qddR3+7XxtAj3QJWTrL3PMic3Lnwzyp+RDNmSbL5RlNVX5Kw1Fnf03tynTXTlr4az7Vlv4q9e087VNWnaki4cF1w0pHQT6m1lojS9HdqaKooZ62skVapXtR3KjGs5k5UVOZy4aiqiZUgFjpcwuNm7byjAYjE12qqqa4oop9HdmY1mqatJ3pid2mNapiNdIV9WUVUaTeuU0xPLWeaPN19qrvszrWosN7jhbVwsZMySCTvIaiJ6ZZJG78Jqp+ZUXwJ3sxtNgc+y+nMcvmdyZmJiY0qpqpnSqmqOqY93GOChxOGrsXJt3Ob19sNgrjuNp6svtRc7NpnTVvmbTT3a7TLFAsy9Uija1FdI/HVUanT1LVtHtxhcqxVvLrVm5iMTXE1RatRE1bsfSqmZimmnvmePVD1w2Bqu0TcmYppjrnt7O9zuhw/3LbjTdHf6e52TUumbhOtNBdrTOskPfIiqsb2uRHxuwi9HJ19Rs5tzhM1xdzLLtm5h8Vbp3qrV2nSrdn6VMxM01R3xPqMRga7VEXYmKqZ64dbYjbu+bka/ZBp2tprfdbTTS3iKomkdGkfybEmWq1FXm8MdMFTtrn2X5Vlk3M0tzctXaqbU0xETr5zWnjEzHDnr19jrgrFy7d0tTpMcfZxZ3p6/a44sbJqO2W2g0vZaCOBb9fqmhtvyJtxkiRXs757Edl6rzOaxOVqqirjpkhOPwWz2xeIwuLxdy9euTV5ixTXc85NuKuFW5TVu6UxwiqrjVETEdeitt14jG01UURFMfGq0jTXTt58eyEK0NLLc6mCGnikmmqXNZFGxvM+RzlRGtRE8VVVRMGX792izRVcuzEU06zMzwiIjnMz2QtERMzER1pgquDmptNV9y7lrrQFq1SkfeOsdVcHNniXl5uR8qN7pr8dcZMVWule1fo+GYTLsTdwmukXqbcTTPHTepp135p169F1nKZpncruUxX/ZmeP4aockbyPVEc1yIuMtXKL70X0Mr0zrGq0y4OQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyfCNpa8a04WN4LZYKWsrLvWOoY6WKmdyyPf1XDXZTC4RfNDXzpSzHA4DbLIsXmVdNNmiLs1TVGsRHLjGk68ZjqlIMrtXLmDv0W41mdNGScJ+1+4WxmubhqDXyXDTuiKS3T/AHTS7VqPhq0c3DGtZzuy7PnjOPZ682CP9J+0ezG0WXWss2b3b+OquUeb81RMVU6TrMzVu06Rp1f4uG7qqcsw2Kw9ybmJ1poiJ11nmrPou+W6x7oWm5TwL9yaO7Q1T4VTqkDZ0fy49zE/qNiM3wWKxGT38Jaq/pq7VVMT+nNExr66kds10U3qa5jhExPq1S1xScPmuNZcRF/r7RY7tqK36qq/ltsuFFC6emqIZWpyffEy1vKnsrlUxy+hi/o2272ewGy+Gw2NxFFi5hqdy5brmKa6aqZne9GdJne5xpE6zPbqueZYDEXMVVVbpmqKp1iY5aT3vL457rS1W8lDb4qmKurtP2KhtVyqo387Z6qKNef2vNU5kRV9UXzyXHoZw16jIrmJromii/eu3bdMxpNNuqY3eHVrpMx3dzzzmqmb8UxOs00xEz3wyXV22WodwuB/bCaw2mvu7LVXXJ9VHRxrNLEkkzmsf3bfaVMoqKqIuMpnGSPZVtFleV9IecW8yv02pu0WIpmuYpid2iJmN6eETpMTpMxrpw5Ki7hrt3LrM26ddJq1075eXvXYKnbLhD0Fpi/QrSajqrxWXplHMuKiipHs5W87fFnO5UXHTzymUUueyGNtZvtxmWb5dVvYam1bszXHxa7lM6zpPKrdiNNePVpOkw88ZRNnA27Nz40zM6dcQ7vBTp+h1TtnvDQXS5tstrqbJStrLg5nOlHEk73OfjzXCKiJ5qqFH0v47E4PN8ixODs+eu03rm7RE6b1W5TERr1RrPGeqNXfKKKa7N+mudI0jWezi9+y7qRbi8N+8tDZ6F1o0jp61UNPZ7dhOaFjqleeaVyfOmlcnM9y+5E6IWTGbM15XtXkOJx1zzuMv3LtV251TMW43aKI6rdETu0RHfM83vTiYu4S/TRGlFMRpHr5z3z1o04KNSW7SvE9pmquc0NNTvkmp2Tyu5WU8skL2RvVfL2nIn4xkLpgy/FY3ZDF2cHTNVURTVNMcZqpprpqqjTwjX1Ldk9yijF0TXy4+2Y4OlfOFDcmPVl3opdJ3uea3rNUz1LocU72NVXLKkzlRjuZPaTDsrn1KzB9J2yk4KxiKMbbpi5u000xPpRM6RFM0RrVGk8J4aRp2OleWYrfqpmieGszPV46o1Rcoi+qZMgreN8UBCft2WOTs/dq3K1yNW9V+Fx0XrMYP2YmP9Zmcx/4Nr3W18xP9V2fGfvV+n/xeT+I78ymcqPjR4wscrN8Z2yer9bau0jc7Np67XmgqtM26iZJRwunRkrY15mPRueTPO1cuwioqrnoprt0R7YZHl+Cx2Ex+KotXKcRermK5inWmZ4TGvxuUxpGsxy04wkWb4O/crort0zMTTEcO1iXG33dm1LovTkssU940rpaktt1fG/n5ahMu7tV81aip5/hISjod3r+Dx+aUUzTZxOJuXLUTGmtHCN6I7Kp9ylzfSmq3anjNNMRPi9F+k7jvBwU6WpdK0lTdKvR96rVvNvpGrLUJ3/WKo7tOrm8q8uURcZX3lDTmmFyPb/GXs5uRboxdm15q5XpFP8AR8Kre9PCJ146a8dI7nebVV/L6IsxrNEzrEc+PKdB2lLjtBwU6mo9