Человеческие сети. Как социальное положение влияет на наши возможности, взгляды и поведение
слишком часто среди чьих-то друзей относительно их собственной доли в населении, тогда как люди, имеющие очень мало друзей, напротив, присутствуют там слишком редко. Человека, имеющего десятерых друзей, считают своим другом вдвое больше людей, чем другого человека, у которого друзей всего пять.
В математическом смысле этот парадокс лишен особой глубины – впрочем, как и большинство парадоксов. Вместе с тем он дает о себе знать почти во всех наших взаимодействиях. Каждый, кому довелось быть родителем – да даже и ребенком! – наверняка не раз слышал фразы: “у всех остальных в школе есть…” или “всем остальным в школе разрешают…”. Хотя подобные утверждения, как правило, и лживы, они часто отражают наши ощущения. С наиболее популярными учениками ведь дружат очень многие дети, и потому если у этих всеобщих любимчиков появляются одинаковые увлечения, тогда остальные дети приходят к выводу, что этим увлекаются абсолютно все. Популярные люди непропорционально часто определяют представления других и задают нормы поведения для остальных.
Чтобы понаблюдать за последствиями парадокса дружбы в самом наглядном виде, давайте рассмотрим один-единственный пример, а потом обратимся к кое-каким данным для подкрепления этого примера.
Рассмотрим школьный класс, где на учеников влияют друзья{14}. В глубине души эти ученики – конформисты. Перед ними стоит простой выбор: что носить – однотонный костюм или костюм в клетку? У каждого свои предпочтения, и в первый день учебного года каждый одевается, следуя собственному вкусу, что и показано на рисунке 2.2.
Рис. 2.2. Первый день учебного года. Четыре самых популярных ученика предпочитают однотонные костюмы; остальные восемь предпочитают костюмы в клетку.
Как истинные конформисты, ученики хотят делать то, что делает большинство остальных, и следуют собственным предпочтениям только в том случае, если сторонников обоих стилей насчитывается поровну. Как видно из рисунка 2.2, четверо учеников предпочитают однотонные костюмы, а восемь – костюмы в клетку. Таким образом, клетке отдают предпочтение две трети учеников, и если бы они сами могли увидеть предпочтения всей группы, тогда уже на следующий день все явились бы в костюмах в клетку. Однако отметим, что однотонные костюмы больше нравятся четырем самым популярным – возможно, самым смелым – ученикам.
Ученики видят не всех – они взаимодействуют в основном со своими друзьями, на что и указывают звенья между узлами сети.
Рисунки 2.3 – от (a) до (d) – показывают, чтó происходит в каждый из следующих дней. Все популярные ученики видят друг друга и некоторых других, и все они видят, что большинство носит однотонное, и потому продолжают ходить в однотонном. Некоторые другие ученики видят главным образом популярных учеников, и потому они тоже переодеваются в однотонное. Как мы видим на схеме 2.3 (а), популярные ученики продолжают носить однотонное, и их примеру следуют еще четверо учеников, и ко второму дню у нас уже восемь учеников в однотонных костюмах. Начиная с этого момента намечаются