А.М. Лушнов

Медицинские информационные системы: многомерный анализ медицинских и экологических данных


Скачать книгу

δν, где Т – время релаксации, а δν – уширение за счет прецессии электронов вследствие неоднородности магнитного поля.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/wgALCAK8AbwBAREA/8QAGwAAAgMBAQEAAAAAAAAAAAAAAwQBAgUABgf/2gAIAQEAAAAB8zttbu1IiQopn53o8D1WduSh8+w40rmIeSEyxCeCeTAAS16iH1iFJC4VPX6UG2ZCUfiqIU3lfYZ25IfnnmbmDHS/6L03kcqjLc8VdOvHvcIbTWKhDHqNW7O1IDVxUE1RKaR/cyr5Hxp6U6OFufUvn2dRnTFV0nmgOtcRdatx1rn3N9RCK2rZc4vNhI2VPWU3eD5TxlL6F7WxqfR/KK1e2QT6zH8kLXsMxMBbmWgZBo+u3nuuuetFwiXVmfSlW874f0eodk+d5LN9ljAGxpB2NvA8320Snpcby4WWDseNm/t7lMQlmOue09Exa4POeK9VrHZXS8kn6JUYZ0e9Iz5nCDpsu+j8rgj1yeiT+dsbnqSTWk3oKoYpcxJMWmf5d1zUUNXHx/QVsos/kP8AtvNY9NE+655RJHW1tTC8RM/UhjoOmhlzPWJeZFxTCwUJ1kCBDbew4GSrOru+axJY2N0nklMzUa9Fg+Tct9T7u6eiO6BioIQhanjFdmdYN0xGQSmDXJx1Qp7zZW/LoJn2PSYeQcf0Xu7rV7u7u7u7pyfD0ZXcfCzKCMdHR1umJm3Wkcc06FfMHtsF9FoWr1M4hClt3dbH8Xzyp9GJTxTxSZ4RTDr3VrQY44mgNOnaXsIZ1LUkXlsjKGW+q77WcfyFU999pHORUcmk1r1ygH3UvZMfQ7UD54v7YYXmKXqt53S8r6rz/rE9y2H4UEtbEgpr5JRJdda4W+CSZsRXrDGuzoLZu7tNZptcrXL+e1vK+r8z61PanL+dZmss2zob3oPEMY+ZYladcNymN3IGKvwtIOU9oaQTAV3PQcDzuv5D2HmPVZWzQfz9L02rl6u5oi+aqH4ljqUqPj2McGcIhKs2y2dHqA1c1sXotqvm9jyfrfL+p8hVdY5dr0CbGwTzHkwWfqAi5knLq3OnImFjV1s+hdHGM+Bpemk3u+d1vKer8rno2OzavoEtqWNz50oIbbEcIBUogzyLqJQmYjqZO+iNspxJsNt5aKzQVOIwvZj17SW7peZ8rUNLtSSEFSksF6b569mpCyDL9UJ9WWVNjzGhDADtebzYJooc19AKrovfOViXBQTchUTfWsY6lYC2IpS5C3oO9R5Ouvf13lshxqBm8wrF30Wb/Qst48eJC5ZeimjVdRbfyQ7KWhr+ZuAlG0ka1933kl9b2rts1yb3p8sqOzdHF/fJOFwcYT1xpLaYITX2oztgqp1UDouVMdfE+pD8Vm+v9NTQio6UzvnpVyHMyt7KGG/Dry7euRXVQYSW1SQg1059GrBC77DB8t9FzvK03GmbKUiIWyDr2YdmnonDtfPrXZuHGYdUMFNl66DFaAs5WcvV9Rg+a9MTPo9XZKQpSl8p5R7NIzojH6N5mvi6HY5fIdExcSDD4g1YtENI8oQziP01byovSj2LVVx0MxVHQzZb0Rq+teut5Mfr9qZwvHKacrqcdSh3bX6R8NW9zu3AD2upy/na7OhiedwTpkc0BpezblPy9Pf7tu8187FsQkMd4MRcxLSIDtpCP6dTB87sO73kPR6UW75njkXI46NT2zHJ+YH7/UsbzXz8egbPsDmlX4MOeZQOUFmfRv5eF7rNwhaxlgr+cWcTs44EHuJsj5wTqzAEA1fKDgMOrDatQfPV6yfc0ZS/o8dMgpr1M4GmlV1pWfa9bN84Ui51VRUKZii5XadRkd5qeLAXeTLXjZlmrXXLbMW1EocMroep62VhsiSZWXFW5XggK5cw6gLaCCkikHirmJSpmmaV5FR5a7krb+5eMrLuLOYEuKhSPrivqRw6gYGwuS9kqaQpsnVWpXiRZLMaERygPUa/Tl5JB5TAxBGwQ4qU2KFqKpF78W9mMFpS76y7V+HcobYxy0ZGP2rdqY6cDzCUoATl+su01eAh0EoibN8bGcXZZXRYZWCV1RRerEGrb3sVrm5VozqSMQnYjg7C7M8qeaDmGq3AJkUnVm80YhcY07ze7nsqVtl5U8okYNROAuEr0Gmb3isXjoZWXrMErFpFJ5BZNeSX1vQktGRmTwcwoZEyCw9gIn1zLA1QPZNdIB8XZA8Cq4yjgqly1GpYln99+I8+rNqZtK3DMj0NDIdLJA0ev2Ybc0mvEEVE0OllGoSPJFYFYtlp901i+O3eJVNTiA6LbIhXsO9iGiazpaDXkA0TdsG01ig2hCB0mkEF9D5umta9V0j2XBXRdStLQaEs9Qy67QqJHqS6nWkMs1pyoZsflrAbZEzxoABaRcxpRZJmLWWvrHSWG1CqbnLxeR9UhCiGsK12JRvOoIJ7GhYIRVZZaFAZNFww4YYYPcGezYcr8rXR6WR5tOsQlkidojEQ95ApSvGZYi9F5AcLZh1qJ0lESUFMSG3QUR1KdYtpWt2jC0tXsFMHVs7Ytx1dSLwFqO2E+VNFsdVxsAvclpXWtBLzdeZdsGjVjAUXp12iOJCKcghFhM1Wntx7544uOAFYr1ZADukhaTTpIwIL9yCSAOJcdtKouEcPaIhjt6LWz/ONoxW1JQaKt0wKT2p1evU1ldK5BoCHWXZfFfOHoLSFwTiz3qz+SSlUFzCExW+e0RSlzdHRXoYMhqcWqAhVl4/MDSFdwQHNHa8i/v6YvEZsgu/RaesCzQAWPE91aLl0kNKDQiIFSudUla9e3OM6ml5Dc22o+fYrVLcRUlOsHRRBY3Wmw4zy6C+lUl0VwwRw1CVFpraeRqbGnHjPZP2j55kywNM9YsVLmlOsS17WHbKu3GlxLop0hs97WJnbaG5iep3rq+E9+fu+dqXVVuUwUHaWZzYmxCEmlsrmJ0r3umjXmXTi28VjQE1i+wdTxcr1Jdifl/RnNMilNyqpGEByO7JemMwbHanEIpndOtDka+eXbd7xvo6qkwfSW2r/AC9ZoTMDUklgXkZIzo0CzauYM1Zjus4OmmI7enh7HtJH8/8ATveS0vN+1Loi+bECFgUK0u5W5M09EJ0LWsLOrabTLTg1K6INApMra9xCXz3etDfnPVa50fnhwUmhiq1sm+xlsDSMebyFG0ENah2hrB1V76NB+n3C1+a+5xcR3E9N6gnmvM6KatSQ4fK5ZsS9ms0hptAVbEoQ1JeovD63FeXN6R6fJe0qoDzftGiZPg/eJeeDdTXLl0zT0Uculcs2qEFS9xrie5Wr9KtlEPb2mvHeyIMniPoMwl4L6Bl+dIkBpnMujRjPbGKxLdUQihN1GRNEVo2e7piz6FqnifcT84fF6zYnO+e+5SSbQy1HVriVFfqT1rdAqGuQQbXIca71mWtHK9PoXL4H3Yvm2os5qeozvAaSdCwurNHV17i4drWnqji3pMheAkuawGz7+fpLeifm3g/bY2AxkN29tneJIuSwiTZY6NLg6LdM9WnMOLrGX4037Tc9kqfz22/0eH1M8a6zW56HN8ZIziUuxcFla1FMR091azco6mGIhh3P6X0t7+V23VF/JaCg4v7RyczzOPwpPTQCuMi3AiLT3RWpo6sFkPMRS/s3HmfMbCWZTLPWm1T2MzjYWURSDgpBqOJrDH17d1awyGsxYtBMWrHpGdkvm68MSZHvVm8366aYOMei3tVfDsMpBvlR1Jv3dWsF6I6huEW800dYy6dS9QPpt+Qea9Z1cLBaANkuc76K/ixdl9HTPRWOJpBU0MgtqcSeb2qqBkyz7HsL8r5z1dexCwsCoVCMdm5bVUbtAF0VjmdYefydr8O1+Y9BkrNQzva/m/W3BnZPoD3wWn5mtVllgKJ0GGkCp1Y6Noj/AJ5vOAXq9NmvpSR/L6G4cHm/TUpiZ224z5112xJt024PhqR02QXis9DR7Zvrc3AuToi1vqhO8j6m9k/OeizAqj3HM/IK4ZgkzNrU8lSlIrnCrW8Ru0GPTSxYNMT0e+03fD+mPAcTXyr56zTtUFHrEJYxbXImgvXqYo6daJ2YtLyeBSxYno9PfRwdQ+3m4O+4viJsCBco79F5tchLErmR2AOlp4u10c56L5lWpLd3egcROdeRj2o28HM0SYowvWiZju60zIInBH1uhzXtaYN5cQ5J096nVXBFVqPWhEdmHVEYNPTFe63RTurXEraY5/St1p7GTrS1p71nsImKLKqrgXsxAVzLk6e7opPRMxWuHQndGueOv0pZnUre0+i9taemK90VhZdZZYHViaxeJjqd1RY3W6Y2bxbu6uJaB2v2t7q1rT0TNp6IiKh830VpSsdHR0QhnTMzXd6vd02x6xWk3Z9ichSX6ZteOnpmfHTHdERFIpFa5qvTMW17T1Z6UU+rSbT6q9yXuS95va17XtbyHd0RbuiIqOmIO8dRjVnq068UzJqOLz6AvXm9rTa97EKS0+djonur016KpZVurSNJ3urNaxOeOajJPoLWr0X6ZteZklrZ3d0x3R3RRLPX6Ii203NYio6QsiSw5Y2CdaY6szPU69uvSvdMd0dFUc0VIOwRo95no6ggiz6EtU+za/dE9PTFb91Yv09HdEdGdnB6DbBJ68zHdNajWUUoS867lo7o609HTEx09PRNZiofPxZl1u8d09PTHR1RKIBgss+gvTqVjrT0d3dF+7u6ImOFUlu6Y7umO6e6IgSmYGxu9KSem0VisVjpjrxMd0xMR3dMTPR09Ed3dHdAsrPhg3obxNu6bVnq1itZ7u7u7u6Y6Ynu6Ijpm1ejq2geQiVzbtNpraYqSvR3VHEW7u6Y6Y6eibd0R09ETNZp3QGTdfptN4iepM1mf//EAC8QAAICAgEDAwQCAgMBAQEBAAECAAMREgQQEyEFIjEUIDJBIzMwNBUkQjVAQ1D/2gAIAQEAAQUCKMsT1DlpB6rYJ6WduL0PzD8D+vnf0en/AOj6tF/Bv/t/+eT89OX/AK3L8JBET+LdU5H1aZHJrMFiNBMTt5lm/d8y3IRGDyoHJWYmIw9uzTaZUzUGaQrNZlhNzO4IHm0OCDQhjcYxgaz6moFH0lRn0dZPpn+t0PzH/Bedy1HI9Se2uj1Cyivlcz6oJ6pRhLUu9YP48n8+lih09RrKKIIbDjqMiV8rBrww43H0TmeeVLv6+OPK1hIRB0tIRd4XGM4hWBZrGHjMyJgTWYIhdhO807z5ZjYeTZbyKxz9QPUKcemf6vQ/Mb8RxK+3zuMicevgB6bOAQx9PfJ4tiXMnKrlTco8iCNnX1oGAZhUY0M1Mx0xDPTb1q5GcrzP9lROQP4uOPOI4gEqqNj8+hKg0f8ArFewImJiWEIuyzKltYfE90s8V/MQeYePU0PBoM+gqlXE7TdD+UsPs+tdRyeUbqaeVWlH1fHIFtTRvPqeoEu/tgh/H1sez4VcwFpWjWKKdgOG7FuGURli/Nd9303JsP1IuUS+1Hr4zLkRx5Vcnj0dlPVYR5tH8NY/iYeAIlZd+dx0qMI/kV7dRtZWFnIH8CmE4mZn7j+XTVTG4tLQ8Ggw+n1mN6aCP+MZZ9NylipyRYjbLG/H1f8ApPzRSmn01JVOOoqWkKuFWXfhYkx54z54lyA8ha1MurVU4wyvbXZwQvDrs17tonqd87qZudDRUP4nHgLONx+0vq39kx/NxkzxOKv8WpLc/iir0/po07hWDlYn1rQc04HLaDmHPdsJbkBZ9VVBfWZsP8J/H1j/AF0GbKh4T4X5EeWfF4KWlZwvNTqe7WpzeDpQ+i96rO9bJSytVPVBtYKFl1arVTWuCp14y2Lattk9UvzYLK5svf8ATx/0eEn/AF+PxtZ6v49PGIoG29az/k6p/wAhxjPquE0LcFp2eC0+h4pn0FcPBaHh3w8bkiGjkTW4QWXKfrHEXmmDmtkc7JHNEHNrgt3nOpu5M7RotTk4Cc5Ytvt/5FQRy1Ydzc8x6tK13bhY75/KseeT4XjHMISV+1KTtfphfUs/UAus5Gfp0bAD5v8Ab9QPn1EbXJShUovd4NKPxeOuvBDWierPYeLrPInzPoap/wAfXP8Ajln/ABwn/Gz/AIxpXw61p+j5Kzt81Zvzln1fLWfX3iD1Fp/yKT63jGHkcFpj09p9PwjPoqzEqXjQ8vjiWMLbxx7RDxfFNNh4H0pZFounJS+uU8XxSjPC3bVw+w78dLHRKnSoBixx9IK0R9lI9S88jbzyv9UK5nAU/VEDvmtc+orreuQrZ76tZXKb313GPU3U8dVJlfFZ5YNW+49cTE1hqQz6eow8SmfQ0w+n1Q+mpP8AixPpaezdSa7AdJTnXOWqGtdpVYK1aWU7M0oAVuTf/J3hO8sFigi8QWiGwMvcbHfsxYFujcevJ4+0ot7df1AF/wBUncHJQz1KzPIFyYLfyLY9j8OvFc9SXNKVzOo2t+4Q/P8Ak9RJXhl3YnJFV51uZ63HqVhWqq95seNYbcxoeX2zkHprNZrNZiYMy02edx53GneM75neE7yzupN1nsJysF+FHN8WO1sdtUzdkvYsHrPJg9X5MHq984l78imCH5jMEX/keLPruMZ9Vx4LqzMj7vUv9TEHtNNSMrcewyniNWSnIh4zGdsA22TG12IwmJ5nmeYWMXbofEBBmRPE8dMdMTE8xdjEDRrCpa0s38hnvMsqFfL+krDPxqu36d/pQQ/MsUPU3pgnL4n047TTBgrsyVtrf6bkiceu9eVBPUv9aYm7VvX/ACBaTNdZdZDYcfJoExCJiYhE8QL5HyAZZ4CL7MTExMTWOJgzzCTKh4e9jB7ilSibDJsWcn/6Us/q4DAcPujuKZ+434z1WdtduaoXk9tQ/P8A/o/+m/3IJ6p/r3WmtvqoX7i0cg1wc6PzcgEmY2PE4u9vIAq5ldJtPJX6Zu6k7qwsMfs26quUYWqw/OH2QEZ3UviYmIVmPCoGNlQE9+M4laM0VPF1qrDZ55P/ANS134/Mtv8ADuQq2+6hjLORXXFOyv8AhPVZ++f/ALX/AK5v/wBP9t/uzM9Q/wBfmflEG/HHyAIixamacfhZiqEX1fU8n065dOd/2OUOPGpaIp7epEavVvdlsJC5LNjVHKjX+QjziDODkGIdRt5dvCJlpa+ATXEQsnIB/wCT5Fw5C1PuMR20X620rxuN2iMmP+E9U+f3zCTy/wD1y/8A6pOC1uOXvtN8y+6vHJAtftNn0yhXF3owsn/H3I1XExKuKF6WWCqu5zY+DF2eEGLZqFs2Zk8CodzH8iYNzUlL9Dn/AMYyMkTXMezVX5G4XYwMpA1mMnxXBtHXd0qG3ulp7t7KqRW7LsxwWdntdKq6uVYkp5NiHdXrnqf5fvnf7n/rlf8A1X+L7B3a+e1Qbl3M3udgMQCemjD38ntz2tKXdIrbdPVbvBhlZ1aFczTBVnB74y7otQsT6h+T9QcBZYApU5L5A3tVw1ls7S5/AIQDskywcDtLyHZ4iaTdVK2Kqs20TwSuKa9TYwUTyVTtlF5Okp5CaCepf2fvnf7pbB5jD6x+Zc5gi4zBCZ6ecSyy+nl1BL1sfZK0u47u4RLbDbaeqNkfroa1M7daFqEYNmsCzuuT7g2DusLqsKV1w3LA25c6RUUl/ZWG7gVYzagNm1VDLb4tS4syl7bdGVxlhYmoXKWIAAtpRv8AkLpyreTyIeTyhC9jv9RyIS2eiwoGBykWx8zh1/8AW9Sp3r49PuqpXuz1O/VYczWwzSwSsHOfPQy0+1LCsL4PgDXDZKuDrAitNtqykR8EKbBqdbAWNJCxTL2wlZ/lUbC3Dm3iLUmAgb+W7t+2wEg8TduZUab+ORdRXnWPViV8StieMnc5AH1PRfn9P8r09N/0OU+OOjKg4yFITgX296/4CfAlkXwqH3mD4sPi8xfyspyrOc7s1uuGbMJLFhZX