alt="epsilon"/>.
The third model, which many theoreticians now call the standard model, is about indistinguishability. This enables us to reason about the specific properties of a cipher we care about. For example, most cipher systems don't hide the length of a message, so we can't define a cipher to be secure by just requiring that an adversary not be able to distinguish ciphertexts corresponding to two messages; we have to be more explicit and require that the adversary not be able to distinguish between two messages
The fourth model is the random oracle model, which is not as general as the standard model but which often leads to more efficient constructions. We call a cryptographic primitive pseudorandom if there's no efficient way of distinguishing it from a random function of that type, and in particular it passes all the statistical and other randomness tests we apply. Of course, the cryptographic primitive will actually be an algorithm, implemented as an array of gates in hardware or a program in software; but the outputs should “look random” in that they're indistinguishable from a suitable random oracle given the type and the number of tests that our model of computation permits.
To visualise a random oracle, we might imagine an elf sitting in a black box with a source of physical randomness and some means of storage (see Figure 5.9) – represented in our picture by the dice and the scroll. The elf will accept inputs of a certain type, then look in the scroll to see whether this query has ever been answered before. If so, it will give the answer it finds there; if not, it will generate an answer at random by throwing the dice, and keep a record for future reference. We'll further assume finite bandwidth – the elf will only answer so many queries every second. What's more, our oracle can operate according to several different rules.
Figure 5.9: The random oracle
5.3.1 Random functions – hash functions
The first type of random oracle is the random function. A random function accepts an input string of any length and outputs a string of fixed length, say
Random functions are our model for cryptographic hash functions. These were first used in computer systems for one-way encryption of passwords in the 1960s and have many more uses today. For example, if the police seize your laptop, the standard forensic tools will compute checksums on all the files, to identify which files are already known (such as system files) and which are novel (such as user data). These hash values will change if a file is corrupted and so can assure the court that the police haven't tampered with evidence. And if we want evidence that we possessed a given electronic document by a certain date, we might submit it to an online time-stamping service or have it mined into the Bitcoin blockchain. However, if the document is still secret – for example an invention for which we want to establish a priority date – then we would not upload the whole document, but just the message hash. This is the modern equivalent of Hooke's anagram that we discussed in section 5.2.4 above.
5.3.1.1 Properties
The first main property of a random function is one-wayness. Given knowledge of an input
A second property of pseudorandom functions is that the output will not give any information at all about even part of the input. So we can get a one-way encryption of the value
A third property of pseudorandom functions with sufficiently long outputs is that it is hard to find collisions, that is, different messages