Vishu Shah

Handbook of Plastics Testing and Failure Analysis


Скачать книгу

tester.Figure 2‐61. Principle of the Rockwell hardness tester.Figure 2‐62. Durometer hardness tester.Figure 2‐63. Barcol hardness tester.

      3 Chapter 3Figure 3‐1. Dtul/Vicat Tester.Figure 3‐2. (a) Vicat softening point apparatus. (b) HDT‐Vicat oil‐free test...Figure 3‐3. Torsion pendulum. Test equipment (schematic).Figure 3‐4. Dynamic mechanical properties by torsion pendulum versus tempera...Figure 3‐5. Plot of typical time–temperature data.Figure 3‐6. Typical UL yellow card.Figure 3‐7. Creep modulus versus temperature.Figure 3‐8. Creep rupture strength versus temperature.Figure 3‐9. Cross‐sectional view of the guarded hot plate.Figure 3‐10. Guarded not plate equipment.Figure 3‐11. Schematic configuration of a quartz‐tube dilatometer.Figure 3‐12. Typical specimen clamp for a brittleness temperature test.Figure 3‐13. Motor‐driven brittleness temperature tester.

      4 Chapter 4Figure 4‐1. Dielectric strength test.Figure 4‐2. Schematic of the dielectric constant test.Figure 4‐3. Typical setup for the arc resistance test.Figure 4‐4. Test setup for the open field technique. (From EMI/RFI Shielding...Figure 4‐5. Shielded box technique. (From EMI/RFI Shielding Guide. Reprinted...Figure 4‐6. Test setup for the coaxial transmission line technique. (From EM...Figure 4‐7. Shielding room technique. (From EMI/RFI Shielding Guide. Reprint...Figure 4‐8. Point‐to‐point resistance measurement.Figure 4‐9. Adhesion testing.

      5 Chapter 5Figure 5‐1. UV, light and condensation apparatus.Figure 5‐2. Cross‐section of a UV, light, and condensation apparatus.Figure 5‐3. Spectral energy distribution of sunlight and a fluorescent lamp....Figure 5‐4. Comparison between the energy output of a sunshine carbon‐arc la...Figure 5‐5. Comparison between the energy output of an enclosed carbon‐arc l...Figure 5‐6. Interior of a typical twin enclosed carbon‐arc apparatus.Figure 5‐7. Interior of a typical open flame carbon‐arc apparatusFigure 5‐8. Spectral power distribution comparison of a “daylight” filtered ...Figure 5‐9. Log‐scale spectral comparison of the critical low UV region betw...Figure 5‐10. Interior of a typical xenon‐arc apparatus.Figure 5‐11. (a) Water‐cooled xenon arc weathering instrument with a rotatin...Figure 5‐12. Comparison of a metal halide global lamp spectra to sunlight....Figure 5‐13. Large‐scale metal halide environmental chamber weathering instr...Figure 5‐14. Typical aluminum exposure racks.Figure 5‐15. Suitably mounted samples.Figure 5‐16. EMMAQUA Fresnel solar concentrators.Figure 5‐17. Ultra‐accelerated EMMA Fresnel solar concentrator device.

      6 Chapter 6Figure 6‐1. Abbe refractometer.Figure 6‐2. Schematic of a hazemeter.Figure 6‐3. Hazemeter.Figure 6‐4. Plane polarized light.Figure 6‐5. Set‐up for examination of stress‐optical sensitivity.Figure 6‐6. Typical photoelastic pattern.Figure 6‐7. Light box for stress‐optical sensitivity examination.Figure 6‐8. (a) Commercially available video polarimeter. (b) Commercially a...Figure 6‐9. Hue value/chroma chart.Figure 6‐10. L, a, b, color space.Figure 6‐11. Colorimeter.Figure 6‐12. Spectrophotometer.Figure 6‐13. (a) A typical spectral reflectance curve. (b) A portable spectr...Figure 6‐14. Light booth for visual color evaluation.Figure 6‐15. Diagram of parallel beam glossmeter showing apertures and sourc...Figure 6‐16. Glossmeter.

      7 Chapter 7Figure 7‐1. Schematic of melt indexer.Figure 7‐2 Melt indexer.Figure 7‐3 (a) A digital programmable viscometer. (b) Cone and plate viscome...Figure 7‐4 (a) A quality control graph of a polymer flow curve. (b) Apparent...Figure 7‐5 Capillary rheometer.Figure 7‐6 Shear stress versus shear rate curve for PVC with two different p...Figure 7‐7 Apparent viscosity versus apparent shear rate.Figure 7‐8 Capillary viscometers commonly used for measurement of polymer so...Figure 7‐9. Example of plot to determine intrinsic viscosity.Figure 7‐10 Molecular weight distribution curve for material. A represents “...Figure 7‐11. Schematic of a GPC system.Figure 7‐12. GPC equipment.Figure 7‐13. Molecules of various sizes elute from the column at different r...Figure 7‐14 A sample material GPC curve is compared with a control material ...Figure 7‐15. Thermal analysis of plastics.Figure 7‐16. (a) Two of the most common types of DSC measuring cells. (b) Di...Figure 7‐17. A typical DSC thermogram.Figure 7‐18. Thermogravimetric analysis instrument.Figure 7‐19 A typical TGA thermogram.Figure 7‐20 Testing by TMA (schematic).Figure 7‐21. A typical TMA thermal curve.Figure 7‐22. TMA instrument.Figure 7‐23. DMA instrument.Figure 7‐24 Sample spectrometer layout.Figure 7‐25. Sample analysis process.Figure 7‐26. Spectrometer.Figure 7‐27 Apparatus for an apparent density test.Figure 7‐28. Spiral flow test specimens.Figure 7‐29 Cup mold.Figure 7‐30 Bubble viscometers.Figure 7‐31. Gel time meter.

      8 Chapter 8Figure 8‐1. Polymer combustion process.Figure 8‐2. Flammability test set‐up.Figure 8‐3. Flammability test set‐up for self‐supporting plastics in the hor...Figure 8‐4. Vertical burning test set‐up.Figure 8‐5. Flammability test chamber.Figure 8‐6. Setchkin self‐ignition call and consol.Figure 8‐7. Cross‐section of hot‐air ignition furnace assembly.Figure 8‐8. Typical equipment layout for oxygen index test.Figure 8‐9. Oxygen index tester.Figure 8‐10. Schematic radiant panel test.Figure 8‐11. Schematic “tunnel test.”Figure 8‐12. Apparatus to determine flammability of rigid cellular plastics....Figure 8‐13. Ignition tester.Figure 8‐14. Smoke density chamber.Figure 8‐15. NBS smoke density chamber.Figure 8‐16. Schematic of smoke generation test.Figure 8‐17. Commercial test apparatus – radiant panel test.Figure 8‐18. Horizontal burning test for HB classification.Figure 8‐19. Vertical burning test for 5V classification.

      9 Chapter 9Figure 9‐1. Jig for solven stress cracking test.Figure 9‐2. Nicking jig.Figure 9‐3. Test specimen, specimen holder, and test assembly.Figure 9‐4. Simple fixture for the constant strain test.

      10 Chapter 10Figure 10‐1. (a) Specific gravity test.(b) Digital version of the appara...Figure 10‐2. (a) Density gradient column. (b) Auto density gradient apparatu...Figure 10‐3. Moisture analyzer employing LOD principle.Figure 10‐4. Sensor‐based moisture analyzer.Figure 10‐5. Sieve analysis.

      11 Chapter 12Figure 12‐1. (a) Typical fusion curve. (b) Fusion curve, heat and shear stab...Figure 12‐2. Brabender torque rheometer.Figure 12‐3. Sigma style mixer for plasticizer absorption test.Figure 12‐4. Powder mixing process.Figure 12‐5. Zahn viscosity cup.Figure 12‐6. Quick burst test apparatus.Figure 12‐7. Pressure intensifier.Figure 12‐8. Hydrostatic pressure tester.Figure 12‐9. Hoop stress versus time to rupture.Figure 12‐10. Crush tester.Figure 12‐11. Torque tester.Figure 12‐12. (a) Pull tester.(b) Multipurpose tester.Figure 12‐13. Typical ash content test setup.

      12 Chapter 13Figure 13‐1. Fisher‐Johns melting point apparatus.

      13 Chapter 14Figure 14‐1. Schematic, air pychnometer.Figure 14‐2. Air pychnometer.Figure 14‐3. Compressive strength (stress at the yield point below 10 percen...Figure 14‐4. Compressive strength (stress at 10 percent deformation).Figure 14‐5. Test apparatus – shear property.Figure 14‐6. Commercial WVT analyzer.Figure 14‐7. Block specimen—tear resistance test. (Reprinted with permission...Figure 14‐8. Die for cutting a dumbbell‐shaped specimen for a tension test....Figure 14‐9. Resilience test apparatus.

      14 Chapter 15Figure 15‐1. Over‐the‐wall approach to new product development.Figure 15‐2. Concurrent engineering approach to product development to reduc...Figure 15‐3. Breakdown of major reasons behind plastic product failures.Figure 15‐4. A typical failure (stress cracking) resulting from improper mat...Figure 15‐5. Comprehensive checklist to help with material selection. See ap...Figure 15‐6. Example of a thermal failure (warped parts) from exposure to ex...Figure 15‐7. (a) A typical expansion loop and (b) an expansion joint install...Figure 15‐8. Effect of crystallinity on chemical resistance.Figure 15‐9. Premature part failure resulting from exposure to an aggressive...FLOWCHART 15‐1. Steps for the Robust Part Design ProcessFigure 15‐10. The combined effect of stress concentration and molded‐in stre...Figure 15‐11. The influence of the fillet radius on stress concentration. At...Figure 15‐12. The effect of notch sensitivity on a very tough material like ...Figure 15‐13. Typical part failure from a lack of radius in key areas of the...Figure 15‐14.