Rai, S., Kureel, A.K., Dutta, P.K., and Mehrotra, G.K. (2018). Phenolic compounds based conjugates from dextran aldehyde and BSA: preparation, characterization and evaluation of their anti‐cancer efficacy for therapeutic applications. International Journal of Biological Macromolecules 110: 425–436.
106 106 Singh, A., Dutta, P.K., Kumar, H. et al. (2018). Synthesis of chitin‐glucan‐aldehyde‐quercetin conjugate and evaluation of anticancer and antioxidant activities. Carbohydrate Polymers 193: 99–107.
107 107 Alibolandi, M., Mohammadi, M., Taghdisi, S.M. et al. (2017). Synthesis and preparation of biodegradable hybrid dextran hydrogel incorporated with biodegradable curcumin nanomicelles for full thickness wound healing. International Journal of Pharmaceutics 532 (1): 466–477.
108 108 Cao, L., Tian, H., Wu, M. et al. (2018). Determination of curdlan oligosaccharides with high performance anion exchange chromatography with pulsed amperometric detection. Journal of Analytical Methods in Chemistry 2018: 3980814.
109 109 Liu, Y., Gu, Q., Ofosu, F.K., and Yu, X. (2015). Isolation and characterization of curdlan produced by Agrobacterium HX1126 using ‐lactose as substrate. International Journal of Biological Macromolecules 81: 498–503.
110 110 Yang, M., Zhu, Y., Li, Y. et al. (2016). Production and optimization of curdlan produced by Pseudomonas sp. QL212. International Journal of Biological Macromolecules 89: 25–34.
111 111 Chien, C.Y., Enomoto‐Rogers, Y., Takemura, A., and Iwata, T. (2017). Synthesis and characterization of regioselectively substituted curdlan hetero esters via an unexpected acyl migration. Carbohydrate Polymers 155: 440–447.
112 112 Miwa, M., Nakao, Y., and Nara, K. (1994). Food applications of Curdlan. In: Food Hydrocolloids, Structures, Properties, and Functions (eds. K. Nishinari and E. Doi), 119–124. New York: Plenum Press.
113 113 Hida, T.H., Ishibashi, K., Miura, N.N. et al. (2009). Citokine induction by a linear 1,3‐glucan, curdlan‐oligo, in mouse leukocytes in vitro. Inflammation Research 58 (1): 9–14.
114 114 Miyanishi, N., Iwamoto, Y., Watanabe, E., and Oda, T. (2003). Induction of TNF‐α production from human peripheral blood monocytes with β‐1,3‐glucanoligomer prepared from laminarin with β‐1,3‐glucanase from Bacillus clausii NM‐1. Journal of Bioscience and Bioengineering 95 (2): 192–195.
115 115 Fu, Y., Zhao, X., and Du, Y. (2011). Research progresses on plant resistance induced by β‐glucan oligomer. Chinese Journal of Biological Control 27 (2): 260–275.
116 116 Bajaj, I.B., Survase, S.A., Saudagar, P.S., and Singhal, R.S. (2007). Gellan gum: fermentative production, downstream processing and applications. Food Technology and Biotechnology 45 (4): 341–354.
117 117 Freitas, F., Alves, V.D., Coelhoso, I., and Reis, M.A.M. (2013). Production and food applications of microbial biopolymers. In: Engineering Aspects of Food Biotechnology, . Part I: Use of Biotechnology in the Development of Food Processes and Products (eds. J.A. Teixeira and A.A. Vicente), 61–83. Boca Raton, FL: CRC Press, Taylor & Francis Group.
118 118 Zia, K.M., Tabasum, S., Khan, M.F. et al. (2018). Recent trends on gellan gum blends with natural and synthetic polymers: a review. International Journal of Biological Macromolecules 109: 1068–1087.
119 119 Mariod, A. and Fadul, H. (2013). Review: gelatin, source, extraction and industrial applications. Acta Scientarum Plonorum Technologia Alimentaria 12 (2): 135–147.
120 120 Saha, D. and Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agent in food: a critical review. Journal of Food Science and Technology 47 (6): 587–597.
121 121 Pacelli, S., Paolicelli, P., Avitabile, M. et al. (2018). Design of a tunable nanocomposite double network hydrogel based on gellan gum for drug delivery applications. European Polymer Journal 104: 184–193.
122 122 Paolicelli, P., Petralito, S., Varani, G. et al. (2018). Effect of glycerol on the physical and mechanical properties of thin gellan gum films for oral drug delivery. International Journal of Pharmaceutics 547 (1–2): 226–234.
123 123 Hill, L.J., Moakes, R.J.A., Vareechon, C. et al. (2018). Sustained release of decorin to the surface of the eye enables scarless corneal regeneration. Regenerative Medicine 3: 23.
124 124 Osmalek, T., Froelich, A., and Tasarek, S. (2014). Application of gellan gum in pharmacy and medicine. International Journal of Pharmaceutics 466 (1–2): 328–340.
125 125 Öner, E.T., Hernàndez, L., and Combie, J. (2016). Review of levan polysaccharide: from a century of past experiences to future prospects. Biotechnology Advances 34 (5): 827–844.
126 126 Srikanth, R., Reddy, C.H.S.S.S., Siddartha, G. et al. (2015). Review on production, characterization and applications of microbial levan. Carbohydrate Polymers 120: 102–114.
127 127 Silbir, S., Dagbagli, S., Yegin, S. et al. (2014). Levan production by Zymomonas mobilis in batch and continuous fermentation. Carbohydrate Polymers 99: 454–461.
128 128 Zhang, T., Li, R., Qian, H. et al. (2014). Biosynthesis of levan by levansucrase from Bacillus methylotrophicus SK 21.002. Carbohydrate Polymers 101: 975–981.
129 129 González‐Garcinuño, A., Tabernero, A., Dominguez, A. et al. (2018). Levan and levansucrase: polymer enzyme, microorganisms and biomedical applications. Biocatalysis and Biotransformation 36: 233–244.
130 130 Jia, Y., Zhu, J., Chen, X. et al. (2013). Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Bioresource Technology 132: 427–431.
131 131 Vázquez, J.A., Montemayor, M.I., Fraguas, J., and Murado, M.A. (2009). High production of hyaluronic and lactic acids by Streptococcus zooepidemicus in fed‐batch culture using commercial and marine peptones from fishing by‐products. Biochemical Engineering Journal 44 (2–3): 125–130.
132 132 Allemann, I.B. and Baumann, L. (2008). Hyaluronic acid gel (Juvéderm) preparations in the treatment of facial wrinkles and folds. Clinical Interventions in Aging 3 (4): 629–634.
133 133 Benedini, L.J. and Santana, M.H. (2013). Effects of soy peptone on the inoculum preparation of Streptococcus zooepidemicus for production of hyaluronic acid. Bioresource Technology 130: 798–800.
134 134 Berkó, S., Maroda, M., Bodnár, M. et al. (2013). Advantages of cross‐linked versus linear hyaluronic acid for semisolid skin delivery systems. European Polymer Journal 49 (9): 2511–2517.
135 135 Rezaeeyiazdi, M., Colombani, T., Memic, A., and Bencherif, S.A. (2018). Injectable hyaluronic acid‐co‐gelatin cryogels for tissue‐engineering applications. Materials 11 (8): 1374.
136 136 Tiwari, S., Patil, R., and Bahadur, P. (2019). Polysaccharide based scaffolds for soft tissue engineering applications. Polymers 11 (1): 1.
137 137 Ahmad, N.H., Mustafa, S., and Che Man, Y.B. (2015). Microbial polysaccharides and their modification approaches: a review. International Journal of Food Properties 18 (2): 332–347.
138 138 Barbucci, R., Spera, V., Armenia, E., and Quagliariello, V. (2017). Microarchitecture of water confined in hydrogels. In: Hydrogels: Design, Synthesis and Application in Drug Delivery Systems and Regenerative Medicine (eds. T.R.R. Singh, G. Laverty and R. Donnelly), 1–31. CRC Press, Taylor & Francis Group.
139 139 Leone, G. and Barbucci, R. (2009). Polysaccharide based hydrogels for biomedical applications. In: Hydrogels (ed. R. Barbucci), 25–41. Milano: Springer.
140 140 Ahmed, E.M. (2015). Hydrogel: preparation, characterization and applications: a review. Journal of Advanced Research 6: 105–121.
141 141 Bathia, J.K., Kaith, B.S., and Kalia, S. (2013). Polysaccharide hydrogels: synthesis, characterization and applications. In: Polysaccharide Based Graft Copolymers (eds. S. Kalia and M.W. Sabaa), 271–290. Berlin, Heidelberg: Springer‐Verlag.
142 142 Hoffman, A.S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 64: 18–23.
143 143 Gacesa, P. (1988). Alginates. Carbohydrate