с которыми имеют дело физики, представляют собой более абстрактные версии этого простого примера – вроде вращений относительно нескольких осей во внутренних математических пространствах. Но все они работают одинаково: найдите преобразование, относительно которого законы природы остаются инвариантными, – и вы нашли симметрию. Подобным преобразованием симметрии может быть что угодно, для чего вы можете записать четкую процедуру, – сдвиг, отражение, поворот или любая другая операция, какую вы только можете придумать. Если эта операция не меняет законов природы – вы нашли симметрию. С ней вы экономите усилия, которые необходимо было бы затратить, чтобы объяснить, к каким изменениям ведет эта операция: вместо этого вы просто констатируете, что изменений нет. Это и есть «экономия мышления» Маха.
В физике мы используем много разных типов симметрии, но у них у всех есть одна общая черта: симметрия – очень сильный объединяющий принцип, поскольку объясняет, как вещи, некогда казавшиеся очень разными, на самом деле, связанные преобразованием симметрии, составляют одно целое. Часто, однако, непросто найти правильную симметрию, чтобы упростить большие объемы данных.
Самым ошеломительным успехом принципов симметрии было, вероятно, создание кварковой модели. С момента появления ускорителей в 1930-х годах физики соударяли частицы друг с другом со все возрастающей энергией. К середине 1940-х они достигли энергий, позволяющих прощупать структуру атомного ядра, – и количество частиц стало расти. Сначала были заряженные пионы и каоны. Затем нейтральный пион и нейтральный каон, первые дельта-резонансы, частица, прозванная «лямбда», заряженные сигма-частицы, ро-частицы, омега-мезон, эта-, К*– и фи-мезон – и это было только начало. Когда Леон Ледерман спросил Энрико Ферми, что тот думает о недавнем открытии частицы, названной К20, Ферми ответил: «Молодой человек, если бы я мог упомнить названия этих частиц, я стал бы ботаником»26.
Всего физики детектировали сотни частиц, каждая из которых была нестабильной и быстро распадалась. Казалось, эти частицы никак друг с другом не связаны, и это шло вразрез с надеждой физиков на то, что законы природы будут упрощаться для более фундаментальных составляющих материи. К 1960-м годам главной исследовательской задачей стало вместить этот «зоопарк частиц» в целостную теорию.
Одним из наиболее популярных подходов в то время был следующий: попросту отказаться от желания получить объяснение и записывать свойства частиц в большую таблицу – матрицу рассеяния, или S-матрицу, – которая была самой противоположностью красоты и экономии. А затем пришел Марри Гелл-Манн. Он определил подходящие свойства частиц – названные гиперзарядом и изоспином, – и оказалось, что все частицы разделяются на симметричные группы, так называемые мультиплеты.
Позднее стало понятно: закономерности мультиплетов означают, что наблюдаемые частицы состоят из более мелких объектов, которые – по тогда еще