rel="nofollow" href="#ulink_ae102341-b6c4-5df2-bbb6-14cbe9dbb81a">TABLE 2.13 Example of alternative estimators: true and estimated state vectors.TABLE 2.14 Case study: estimation accuracy results.TABLE 2.15 Case study: computational performance results.TABLE 2.16 Case study: estimation accuracy results with bad measurements.TABLE 2.17 Case study: computational performance results with bad measurements.
2 Chapter 3TABLE 3.1 Ybus structure for the nine‐branch subsystem.TABLE 3.2 DFAX matrix and pre‐contingency flows for nine‐branch subsystem....TABLE 3.3 N − 1 flows, rank and degree of vulnerability and criticality, for nine...TABLE 3.4 Number of large DFAX compared with number of monitored branches.TABLE 3.5 Load growth and system expansion, congestion, and stress [19].
3 Chapter 4TABLE 4.1 Synthesis of related work.TABLE 4.2 Experimental parameters for case study.TABLE 4.3 Power flow solution for the example.TABLE 4.4 SE outputs and predicted states for the example.TABLE 4.5 Comparison of differences with detection thresholds.
4 Chapter 5TABLE 5.1 Example branch data for the topology in Figure 5.1 (A > B means B is th...TABLE 5.2 Example coordination data for the topology in Figure 5.1.TABLE 5.3 Parameters for line impedances per unit length.TABLE 5.4 Line length of distribution lines.TABLE 5.5 Power injection by loads.TABLE 5.6 Standard deviation of measurements.TABLE 5.7 Parameters for the wind turbine generator.TABLE 5.8 Test scenarios.
5 Chapter 6TABLE 6.1 Mean‐square estimation error in the presence of bad data.
6 Chapter 7TABLE 7.1 Synchronized sensor locations versus wave arrival times for the fault o...TABLE 7.2 Values of ℓ, , ψ(ℓ) (in ms), (in ms), and Dℓ (in ms) for the fault occ...TABLE 7.3 Synchronized sensor locations versus wave arrival times (after correcti...TABLE 7.4 Optimal PMU deployment results for three IEEE test systems.
7 Chapter 9TABLE 9.1 Simulated measurements for 6‐bus DC system.TABLE 9.2 Estimation results of case 0, 6‐bus DC system.TABLE 9.3 Estimation errors of case 0, 6‐bus DC system.TABLE 9.4 Estimation results of case 1, 6‐bus DC system.TABLE 9.5 Estimation errors of case 1, 6‐bus DC system.TABLE 9.6 Estimation results of case 2, 6‐bus DC system.TABLE 9.7 Estimation errors of case 2, 6‐bus DC system.TABLE 9.8 Estimation results of case 3, 6‐bus DC system.TABLE 9.9 Estimation errors of case 3, 6‐bus DC system.TABLE 9.10 Comparison of 6‐bus indicators.TABLE 9.11 Simulated measurements for 6‐bus AC system.TABLE 9.12 Estimation errors of case 0, 6‐bus AC system.TABLE 9.13 Estimation errors of case 1, 6‐bus AC system.TABLE 9.14 Estimation errors of case 2, 6‐bus AC system.TABLE 9.15 Estimation errors of case 3, 6‐bus AC system.TABLE 9.16 Comparison of indicators for 6‐bus AC system.TABLE 9.17 Actual values for 14‐bus AC system.TABLE 9.18 Measured meters for 14‐bus AC system, full redundancy.TABLE 9.19 Selected measured meters for 14‐bus AC system, median redundancy....TABLE 9.20 Full redundancy of 14‐bus AC system.TABLE 9.21 Median redundancy of 14‐bus AC system.TABLE 9.22 Actual and measured values for 30‐bus AC system.TABLE 9.23 Median redundancy of 30‐bus AC system.TABLE 9.A.1 Line data of 6‐bus DC system.TABLE 9.A.2 Bus data of 6‐bus DC system.TABLE 9.A.3 Line data of 6‐bus AC system.TABLE 9.A.4 Bus data of 6‐bus AC system.TABLE 9.B.1 Line data of 14‐bus AC system.TABLE 9.B.2 Bus data of 14‐bus AC system.TABLE 9.C.1 Line data of 30‐bus AC system.TABLE 9.C.2 Bus data of 30‐bus AC system.
8 Chapter 10TABLE 10.1 Example simulation results with confidence values.TABLE 10.2 Example simulation results (voltages and standard deviations).TABLE 10.3 Example simulation results (accuracy and minimum accuracy values).TABLE 10.4 Compliance ratios.TABLE 10.5 Compliance ratios (case study 2).
9 Chapter 11TABLE 11.1 Correlation factors between voltage estimates with a shared voltage me...TABLE 11.2 Measurement location for Scenario 1.TABLE 11.3 Measurement location for Scenario 2.TABLE 11.4 Measurement location for Scenario 3.
10 Chapter 12TABLE 12.1 Attributes of selected works on multi‐area state estimation.TABLE 12.2 Initialization for boundary state variables.TABLE 12.3 Performance of SFHSE and the comparison with the centralized state est...TABLE 12.4 Comparison between SFHSE, the CSE, and another MASE method for IEEE 11...TABLE 12.5 Distributed bad data identification in the IEEE 118‐bus system test....TABLE 12.6 Comparison between SFHSE and the CSE for real system test.
11 Chapter 13TABLE 13.1 Results for comparison of parallel ASM WLS with centralized WLS.TABLE 13.2 Data sets for simulation.TABLE 13.3 Estimation error for different percentage of PMU installation.TABLE 13.4 Execution time for CPU‐based and GPU‐based DSE.
12 Chapter 14TABLE 14.1 Reported required time [11].
List of Illustrations
1 Chapter 2Figure 2.1 One‐line diagram and measurement configuration of a 4‐bus power s...Figure 2.2 Objective function for the WLS estimator as a function of the err...Figure 2.3 Objective function for the LAV estimator as a function of the err...Figure 2.4 Objective function for the QC estimator as a function of the erro...Figure 2.5 Objective function for the QL estimator as a function of the erro...Figure 2.6 Graphical representation of the LMS estimator.Figure 2.7 Problem size comparison for different estimators.Figure 2.8 Example of alternative estimators: four‐bus system.Figure 2.9 Example of alternative estimators: residuals of the WLS solution....Figure 2.10 Example of alternative estimators: residuals of the LAV solution...Figure 2.11 Example of alternative estimators: residuals of the QC solution....Figure 2.12 Example of alternative estimators: residuals of the QL solution....Figure 2.13 Histogram of voltage magnitude estimation accuracy for each meth...Figure 2.14 Histogram of voltage angle estimation accuracy for each method....Figure 2.15 Histogram of the computation time for each estimator.
2 Chapter 3Figure 3.1 A generic network [24].Figure 3.2 Nine‐branch subsystem of 118‐bus IEEE test system.Figure 3.3 DFAX distribution functions for large and small systems [19].Figure 3.4 DFAX density functions resemble power law functions.Figure 3.5 Degree of vulnerability is affected by interregional transfers.Figure 3.6 Rank of vulnerability for peak, shoulder, and minimum loads.Figure 3.7 Degree of criticality for peak, shoulder, and minimum loads.Figure 3.8 RankV and tipping points as a function of demand, SW WI.
3 Chapter 4Figure 4.1 Intuitive understanding of stealthy false data injection attacks....Figure 4.2 Intuitive understanding of stealthy topology attacks.Figure 4.3 Overview of model‐based anomaly detection approach.Figure 4.4 Detailed workflow of model‐based anomaly detection.Figure 4.5 IEEE 14‐bus system with a measurement configuration.Figure 4.6 Plotting deviation between predicted states and SE outputs over a...Figure 4.7 Variation of FPR with respect to detection thresholds for θ2Figure 4.8 Variation of TPR with respect