Eloi Laurent

The New Environmental Economics


Скачать книгу

provides energy and materials without which all economic models would remain purely theoretical.

      The amount of energy human societies receive from the sun is astounding: 8,000 times what they need to power the global economy. Energy that drives ecosystems comes almost entirely from the sun, a fraction of its rays (about 7%) being captured by green plants for growth via the process of photosynthesis and sustaining human life. But ecosystems’ energy is governed by a law of entropia: It can neither be created or destroyed (first law of thermodynamics) and its usage produces waste heat that humans cannot use again (second law of thermodynamics).

      Economies are exactly like organisms: They need not only energy but nutrients to function.10 Material resources abundant on Earth and useful for humans are comprised of the biomass (wood and crops for food, energy, and plant-based materials), fossil fuels (coal, gas, and oil), metals (such as iron, aluminum, and copper) and non-metallic minerals (including sand, gravel, and limestone), all of which feed the economy. In fact, at a time when the digital revolution is supposed to make economies immaterial, humans today extract close to 90 billion tonnes of material resources; more than three times the amount they needed fifty years ago.11

      Since its emergence in the 1980s, ecological economics has focused on the joint study of natural and human systems. It goes beyond both conventional environmental economics, which reduces the application of the standard neo-classical model to ecological issues, and ecology, narrowly understood as the science of the natural world. The causes and consequences of climate change render obvious this need to think in social-ecological terms. The difficulty is to think about these issues in a truly integrated way, not by juxtaposing natural sciences (physical and natural) and social sciences, but by intermingling them, combining them, articulating them. What is more, this joint study should be dynamic, since on both sides systems evolve and even co-evolve; that is to say, evolve together dynamically.

      Another important concept in this respect is that of resilience. The notion of resilience, nowadays widespread in many disciplines, was born in the field of psychology. It was introduced by Holling in 1978 in the ecological literature and broadly defined as the ability of a system to tolerate shocks without changing its nature (i.e. retaining core ecological functionings). It is clear that ecological resilience should be combined with social resilience in the event of an ecological shock. We can illustrate this point with the role played by mangroves in Asian coastal areas.

      Mangroves are aquatic forests that provide coastal human communities with forest and fisheries resources. They also protect shorelines from erosion and ocean hazards such as tsunamis (they also have the ability to store carbon). The destruction of mangroves to develop shrimp fishing along the Asian coasts has significantly increased the vulnerability of coastal populations that were severely hit by the Asian tsunami of December 2004. A 2005 study showed both that human activities reduced the area of mangroves by 26% in the five countries most affected by the tsunami, and that remaining mangroves had significantly reduced the destruction caused by the tsunami.12

      Elinor Ostrom (2009) has sought to systematically understand what she calls “complex social-ecological systems” such as those. Such systems do not lend themselves to simplistic typologies and indeed suppose a certain complexity of analysis. They can be broken down into four essential elements: resource systems, resource units, users, and governance systems. Ostrom takes the example of a protected park where there are forests, animal and plant species, and water resources. These include: resource systems (the park contains wooded areas, fauna and flora, water systems); resource units (for example, trees, shrubs, plants in the park, different types of wildlife, volume and flow of water), users (who use park resources for recreational purposes, subsistence, or commercial); and finally governance systems (a national government, NGOs involved in park management, rules of use and exploitation of resources).

      Each of these four subsystems is itself composed of several second-level variables (for example, the size of a resource system, the growth of a resource unit, the degree of user cooperation, or the level of governance). Ostrom then defines two additional notions: Interactions between users (information sharing, deliberation process, and so on) and their results (economic and ecological outcomes). This complex social-ecological analysis must also take into account the social, economic and political context upstream and the effect on other social-ecological systems, in other words add to the four internal systems already described two external systems. From this dynamic and complex framework, Ostrom has managed to derive novel ways to govern the commons.

      Deprived of the rich diversity of life, which is as much a source of material well-being as a reservoir of knowledge, we would become biologically impoverished but we would also erode intellectually. Our dependence on the natural world is therefore very real and it is because we do not understand it that we are blindly attacking ourselves when we brutalize it. We thus have to find ways to govern the world of which we have become the stewards. This starts by understanding the long perspective of the mutual history of social and natural systems and then moving to the practical ways to build robust human institutions to enjoy natural resources in a sustainable way.