Группа авторов

Autoimmune Liver Disease


Скачать книгу

Decrease pathological consequences of proinflammatory IL‐23 Monoclonal antibody against p40 subunit. SOC in psoriasis and Crohn's disease. Blocks IL‐23 stimulation of Th17 cells Anti‐IL‐17 Decrease pathological consequences of Th17 production of IL‐17 SOC for psoriasis and psoriatic arthritis. Clinical trials designed Anti‐IL‐21 Decrease multiple pathological consequences of IL‐21 in innate and adaptive immune responses Clinical trials in RA, T1DM, Crohn's disease Inhibition of proinflammatory cytokine signaling IL‐2 Decrease proliferation of activated CD4 and CD8 T cells SOC CNI and mTOR inhibitors. POC JAK3 inhibition IL‐6 Decrease proinflammatory IL‐6R‐mediated signaling POC and SOC indications for JAK1/2 inhibition IL‐12/IL‐23 Decrease proinflammatory IL‐12 and IL‐23 signaling that polarize to a Th1 response, increase secretion of IFN‐γ and TNF‐α, increase cytotoxicity of NK cells and CD8 CTLs and drive differentiation of pathogenic Th17 cells POC and SOC indications for JAK2 inhibition IFN‐α/IFN‐β Decrease gene expression induced by type 1 IFNs POC and SOC indications for JAK1 inhibition IFN‐γ Decrease proinflammatory actions of IFN‐γ produced by NK, NKT, CD4 and CD8 T cells POC and SOC indications for JAK1/JAK2 inhibition Immunosuppressant cytokines rHuIL‐10 Antagonize Th1‐mediated pathology SOC to prevent pancreatitis post‐ERCP. Trial in ulcerative colitis terminated for concern over Guillain–Barré syndrome Inhibition of transendothelial migration of effector cells Anti‐chemokine receptors or integrins Prevent injury by blocking egress of effector cells from blood into target tissues Block of α4β7 integrin ineffective in PSC. Potential for studies of other FDA‐approved chemokine/integrin inhibitors Physiologic immunoregulation PIF Administration to recreate immunosuppressive and immunomodulatory environment of the fetus and mother during pregnancy Phase 1b trial of synthetic PIF in AIH completed

      AIH, autoimmune hepatitis; BAFF, B‐cell‐activating factor; CNI, calcineurin inhibitor; ERCP, endoscopic retrograde cholangiopancreatography; IL, interleukin; iTregs, inducible T regulatory cells; JAK, Janus kinase; MDSCs, myeloid‐derived suppressor cells; MS, multiple sclerosis; mTOR, mechanistic target of rapamycin; PIF, pre‐implantation factor; POC, proof of concept; PSC, primary sclerosing cholangitis; RA, rheumatoid arthritis; rHuIL‐10, recombinant human IL‐10; SLE, systemic lupus erythematosus; SOC, standard of care; T1DM, type 1 diabetes mellitus; Th, T helper cell; TNF, tumor necrosis factor.

      1 1 Devarapu, S.K., Lorenz, G., Kulkarni, O.P. et al. (2017). Cellular and molecular mechanisms of autoimmunity and lupus nephritis. Int. Rev. Cell Mol. Biol 332: 43–154.

      2 2 Gambino, C.M., Aiello, A., Accardi, G. et al. (2018). Autoimmune diseases and 8.1 ancestral haplotype: an update. HLA 92 (3): 137–143.

      3 3 Toubi, E. and Vadasz, Z. (2019). Innate immune‐responses and their role in driving autoimmunity. Autoimmun. Rev 18 (3): 306–311.

      4 4 Caso, F., Costa, L., Nucera, V. et al. (2018). From autoinflammation to autoimmunity: old and recent findings. Clin. Rheumatol 37 (9): 2305–2321.

      5 5 Shen, H.H., Yang, Y.X., Meng, X. et al. (2018). NLRP3: a promising therapeutic target for autoimmune diseases. Autoimmun. Rev 17 (7): 694–702.

      6 6 Grant, C.R. and Liberal, R. (2017). Liver immunology: how to reconcile tolerance with autoimmunity. Clin. Res. Hepatol. Gastroenterol 41 (1): 6–16.

      7 7 Chiba, A., Murayama, G., and Miyake, S. (2018). Mucosal‐associated invariant T cells in autoimmune diseases. Front. Immunol. 9: 1333.

      8 8 Cheng, M. and Anderson, M.S. (2018). Thymic tolerance as a key brake on autoimmunity. Nat. Immunol 19 (7): 659–664.

      9 9 Ray, A. and Dittel, B.N. (2017). Mechanisms of regulatory B cell function in autoimmune and inflammatory diseases beyond IL‐10. J. Clin. Med 6 (1): 12.

      10 10 Theofilopoulos, A.N., Kono, D.H., and Baccala, R. (2017). The multiple pathways to autoimmunity. Nat. Immunol 18 (7): 716–724.

      11 11 Dominguez‐Villar, M. and Hafler, D.A. (2018). Regulatory T cells in autoimmune disease. Nat. Immunol 19 (7): 665–673.

      12 12 Taher, T.E., Bystrom, J., Ong, V.H. et al. (2017). Intracellular B lymphocyte signalling and the regulation of humoral immunity and autoimmunity. Clin. Rev. Allergy Immunol 53 (2): 237–264.

      13 13 Phillips, B.E., Garciafigueroa, Y., Engman, C. et al. (2019). Tolerogenic dendritic cells and T‐regulatory cells at the clinical trials crossroad for the treatment of autoimmune disease: emphasis on type 1 diabetes therapy. Front. Immunol. 10: 148.

      14 14 Lee, G.R. (2018). The balance of Th17 versus Treg cells in autoimmunity. Int. J. Mol. Sci 19 (3): 730.

      15 15 Inshaw, J.R.J., Cutler, A.J., Burren, O.S. et al. (2018). Approaches and advances in the genetic causes of autoimmune disease and their implications. Nat. Immunol 19 (7): 674–684.

      16 16 Tough, D.F. and Prinjha, R.K. (2017). Immune disease‐associated variants in gene enhancers point to BET epigenetic mechanisms for therapeutic intervention. Epigenomics 9 (4): 573–584.

      17 17 Di Marco, M., Ramassone, A., Pagotto, S. et al. (2018). MicroRNAs in autoimmunity and hematological malignancies. Int. J. Mol. Sci 19 (10): 3139.

      18 18 Moulton, V.R. (2018). Sex hormones in acquired immunity and autoimmune disease. Front. Immunol. 9: 2279.

      19 19 Dankers, W., Colin, E.M., van Hamburg, J.P., and Lubberts, E. (2016). Vitamin D in autoimmunity: molecular mechanisms and therapeutic potential. Front. Immunol. 7: 697.

      20 20 De Luca, F. and Shoenfeld, Y. (2019). The microbiome in autoimmune diseases. Clin. Exp. Immunol 195 (1): 74–85.

      21 21 Rojas, M., Restrepo‐Jimenez, P., Monsalve, D.M. et al. (2018). Molecular mimicry and autoimmunity. J. Autoimmun 95: 100–123.

      22 22 White, K.D., Chung, W.H., Hung, S.I. et al. (2015). Evolving models of the immunopathogenesis of T cell‐mediated drug allergy: the role of host, pathogens, and drug response. J. Allergy Clin. Immunol 136 (2): 219–234. quiz 235.

      23 23 Abdolmaleki, F., Farahani, N., Gheibi Hayat, S.M. et al. (2018). The role of efferocytosis in autoimmune diseases. Front. Immunol. 9: 1645.

      24 24 Wagner, D.H. Jr. (2017). Overlooked mechanisms in type 1 diabetes etiology: how unique costimulatory molecules contribute to diabetogenesis. Front. Endocrinol 8: 208.

      25 25 Molodtsov, A. and Turk, M.J. (2018). Tissue