Zhuming Bi

Computer Aided Design and Manufacturing


Скачать книгу

are counted and the valid condition for a simple solid using the Euler–Poincare Law is applied. It shows that all objects satisfy the conditions as simple objects.

      Example 2.6

Example F E V L B G FE + VL = BG
image 0 1 2 0 1 0 0 − 1 + 2–0 ≡ 1 − 0
image 0 3 4 0 1 0 0 − 3 + 4 − 0 ≡ 1 − 0
image 2 8 8 1 1 0 2 − 8 + 8 − 1 ≡ 1 − 0
image 2 2 2 1 1 0 2 − 2 + 2 − 1 ≡ 1 − 0
image 1 4 4 0 1 0 1 − 4 + 4 − 0 ≡ 1 − 0
image 5 12 8 0 1 0 5 − 12 + 8 − 0 ≡ 1 − 0

      Solution

      Example 2.7

Example F E V L B G FE + VL = 2(BG)
image 13 27 18 2 1 0 13 − 27 + 18 − 2 ≡ 2(1 − 0)
image 10 24 16 2 1 1 10 − 24 + 16 − 2 ≡ 2(1 − 1)
image 7 13 10 0 2 0 7 − 13 + 10 − 0 ≡ 2(2 − 0)
image 12 24 16 0 2 0 12 − 24 + 16 − 0 ≡ 2(2 − 0)

      Solution

      As shown in the middle six columns of Table 2.9, the numbers of faces (F), edges (E), vertices (V), bodies (B), inner loops on faces (L), and genuses (G) in a geometry are counted and the valid condition for a simple solid using the Euler–Poincare Law is applied. It shows that all generic objects satisfy the conditions as generic objects.

      2.3.3 Euler–Poincare Law for Solids