of tautomeric structure of galactopyranoside derivative."/>
2.9.2 Culture Conditions
The establishment of Allium cell cultures has also been exploited for study of biosynthetic pathways of flavonoids compounds (Turnbull et al. 1981; Lancaster et al. 1988). By this study, maximum levels of β-sitosterol and lanosterol were obtained in six weeks old callus cultures of A. cepa (Chaturvedi et al. 2013). UV-B was used as an elicitor for enhancement of flavonol production in shallot tissue culture. Flavonoid accumulation tends to increase with prolonged exposure to UV-B but could not be generalized for the different growth stages. Quercetin was found to be the most abundant flavonol followed by myricetin and kaempferol in in vitro cultures and among plants grown in the greenhouse (Malab et al. 2017).
References
1 Alpsoy, S., Aktas, C., Uygur, R. et al. (2013). Antioxidant and anti-apoptotic effects of onion (Allium cepa) extract on doxorubicin-induced cardiotoxicity in rats. J. Appl. Toxicol. 33: 202–208.
2 Asgarpanah, J. and Ghanizadeh, B. (2012). Pharmacologic and medicinal properties of Allium hirtifolium Boiss. Afr. J. Pharm. Pharmacol. 6: 1809–1814.
3 Barile, E., Bonanomi, G., Antignani, V. et al. (2007). Saponins from Allium minutiflorum with antifungal activity. Phytochemistry 68: 596–603.
4 Barile, E., Capasso, R., Izzo, A.A. et al. (2005). Structure-activity relationships for saponins from Allium hirtifolium and Allium elburzense and their antispasmodic activity. Planta Med. 71: 1008, 1010.
5 Barile, E., Zolfaghari, B., Sajjadi, S.E., and Lanzotti, V. (2004). Saponins of Allium elburzense. J. Nat. Prod. 67: 2037–2042.
6 Beesk, N., Perner, H., Schwarz, D. et al. (2010). Distribution of quercetin-3, 4′-O-diglucoside, quercetin-4′-O-monoglucoside, and quercetin in different parts of the onion bulb (Allium cepa L.) influenced by genotype. Food Chem. 122: 566–571.
7 Bidkar, A., Ghadiali, M., Patel, C. et al. (2012). Anthelmentic activities of the crude extract of Allium cepa L. bulbs and Elletraria cardamomum seeds. Res. J. Pharm., Biol. Chem. Sci. 3: 50–57.
8 Campos, K.E., Diniz, Y.S., Cataneo, A.C. et al. (2003). Hypoglycaemic and antioxidant effects of onion, Allium cepa: dietary onion addition, antioxidant activity and hypoglycaemic effects on diabetic rats. Int. J. Food Sci. Nutr. 54: 241–246.
9 Chaturvedi, P., Khanna, P., and Chowdhary, A. (2013). Phytosteroids from tissue culture of Allium cepa L. and Trachyspermum ammi S prague. J. Pharmacogn. Phytochem. 1: 42–48.
10 Chen, H.-F., Wang, G.-H., Luo, Q. et al. (2009). Two new steroidal saponins from Allium macrostemon Bunge and their cytotoxicity on different cancer cell lines. Molecules 14: 2246–2253.
11 Corea, G., Fattorusso, E., and Lanzotti, V. (2005). Saponins and flavonoids of Allium triquetrum. J. Nat. Prod. 66: 1405–1411.
12 Corzo-Martínez, M., Corzo, N., and Villamiel, M. (2007). Biological properties of onions and garlic. Trends Food Sci. Technol. 18: 609–625.
13 Ebrahimia, R., Zamani, Z., and Kash, A. (2009). Genetic diversity evaluation of wild persian shallot (Allium hirtifolium Boiss.) using morphological and RAPD markers. Sci. Hortic. 119: 345–351.
14 Essman, E.J. (1984). The medical uses of herbs. Fitotherapia 55: 279–289.
15 Farag, M.A., Ali, S.E., Hodaya, R.H. et al. (2017). Phytochemical profiles and antimicrobial activities of Allium cepa Red cv. and A. sativum subjected to different drying methods: a comparative MS-based metabolomics. Molecules 22: 761.
16 Fattorusso, E., Lanzotti, V., and Taglialatela-Scafati, O. (1999). Antifungal N-feruloyl amides from roots of two Allium species. Plant Biosyst. 133: 199–203.
17 Fattorusso, E., Iorizzi, M., Lanzotti, V., and Taglialatela-Scafati, O. (2002). Chemical composition of shallot (Allium ascalonicum Hort.). J. Agric. Food Chem. 50: 5686–5690.
18 Fredotović, Ž., Šprung, M., Soldo, B. et al. (2017). Chemical composition and biological activity of Allium cepa L. and Allium × cornutum (Clementi ex Visiani 1842) methanolic extracts. Molecules 22: 448.
19 Galeone, C., Pelucchi, C., Levi, F. et al. (2006). Onion and garlic use and human cancer. Am. J. Clin. Nutr. 84: 1027–1032.
20 Gorovits, M.B., Khristulas, F.S., and Abubakirov, N.K. (1971). Alliogenin and alliogenin β-d-glucopyranoside from Allium giganteum. Chem. Nat. Compd. 7: 412–417.
21 Gorovits, M.B., Khristulas, F.S., and Abubakirov, N.K. (1973). Steroid saponins and sapogenins of Allium IV. Karatavigenin – a new sapogenin from Allium karataviense. Chem. Nat. Compd. 9: 715–717.
22 Higuchi, O., Tateshita, K., and Nishimura, H. (2003). Antioxidative activity of sulfur-containing compounds in Allium species for human low-density lipoprotein (LDL) oxidation in vitro. J. Agric. Food Chem. 51: 7208–7214.
23 Jafarian, A., Ghannadi, A., and Elyasi, A. (2003). The effects of Allium hirtifolium Boiss. on cell-mediated immune response in mice. Iran. J. Pharm. Res. 2: 51–55.
24 Jaiswal, N. and Rizvi, S.I. (2012). Variation of antioxidant capacity in different layers of onion (Allium cepa L.) at two different stages of maturation. Curr. Nutr. Food Sci. 8: 126–130.
25 Jalal, R., Bagheri, S.M., and Rasuli, M.B. (2007). Hypoglycemic effect of aqueous shallot and garlic extract in rats with fructose induced resistance. J. Clin. Biochem. Nutr. 41: 218–223.
26 Jellin, J.M., Batz, F., and Hitchens, K. (2000). Natural Medicines Comprehensive Data Base. California: Stockton press.
27 Keusgen, M., Fritsch, R.M., Hisoriev, H. et al. (2006). Wild Allium species (Alliaceae) used in folk medicine of Tajikistan and Uzbekistan. J. Ethnobiol. Ethnomed. 2: 18.
28 Lancaster, J., Dommisse, E., and Shaw, M. (1988). Production of flavour precursors [S-alk(en)yl-l-cysteine sulphoxides] in photomixotrophic callus of garlic. Phytochemistry 27: 2123–2124.
29 Lee, J. and Mitchell, A.E. (2011). Quercetin and isorhamnetin glycosides in onion (Allium cepa L.): varietal comparison, physical distribution, coproduct evaluation, and long-term storage stability. J. Agric. Food Chem. 59: 857–863.
30 Lee, J.B., Miyake, S., Umetsu, R. et al. (2012). Antifluenza A virus effects of fructan from Welsh onion (Allium fistulosum L.). Food Chem. 134: 2164–2168.
31 Li, Q.-Q., Zhou, S.-D., and He, X.-J. (2010). Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Ann. Bot. 106: 709–733.
32 Mahmoudabadi, A.Z. and Nasery, M.K.G. (2009). Antifungal activity of shallot, Allium ascalonicum L. (Liliaceae), in vitro. J. Med. Plant Res. 3: 450–453.
33 Malab, G.S.S., Aspuria, E.T., and Bernardo, E.L. (2017). Ultraviolet-B induced flavonoid production in in