parallel to Eq. (4.20).
The scalar (or dot) product of a vector u by a tensor τ is a vector defined by
(5.31)
inspired by Eq. (3.52) and taking advantage of Eq. (4.47) – or, in condensed form,
if the order of multiplication is reversed, one obtains
(5.33)
that may be rephrased as
– so inspection of Eq. (5.34) vis‐à‐vis with Eq. (5.32) indicates that
(5.35)
except if τ is symmetric (as τji = τij under such circumstances).
The scalar product of two tensors, σ and τ (also known as double dot product, :), is a scalar defined as
(5.36)
where straightforward algebraic rearrangement was used to advantage – or, in condensed form,
(5.37)
Here tensor σ abides to
(5.38)
while (1 × 3) row vectors σ_x, σ_y, and σ_z are defined as
(5.39)
(5.40)
and
(5.41)
respectively, whereas (3 × 1) column vectors τx_, τy_, and τz_ abide to
(5.42)
(5.43)
and
(5.44)
respectively.
Finally, the dot product of two tensors, σ and τ, may be considered, according to
thus generating another tensor; Eq. (5.45) is equivalent to writing
(5.46)
which mimics the classical product of two matrices – see Eq. (4.47).
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.