Saeid Sanei

Body Sensor Networking, Design and Algorithms


Скачать книгу

its bulk, it paved the way for future IoT technologies. This required advances in artificial intelligence, which started to flourish in the 2000s.

      The Sony Walkman was a clear commercial success. The Walkman and subsequent Sony Discman helped the company become an entertainment powerhouse. Over 400 million Walkman portable music players have been sold with about 200 million of those being cassette players.

      However, not all products launched with a fanfare are destined for success. The commercial potential of many wearable technologies introduced in recent years are not always predictable or even achieved.

      What is clear is that, based on the history of wearable technology, devices that move the masses are far and between. The successes that do make it, however, can change the world and generate chart-topping returns. Meanwhile, people's needs change over time, and include entertainment, activity, sport, and now most importantly health. This brings wearables such as Quell to the market. When strapped on the body Quell predicts and detects the onset of chronic pain and stimulates nerves to block pain signals to the brain. Other wearables to measure blood alcohol content, athletic performance, blood sugar, heart rate, and many other bioindicators rapidly came to the market as the desire for health monitoring grew. This may become more demanding as the interest in personal medicine grows.

      Wearable technology including sensors, sensor networks, and the associated devices has opened its space in a variety of applications. Long-term, noninvasive, and nonintrusive monitoring of the human body through collecting as much biometric data and state indicators as possible is the major goal of healthcare wearable technology developers. Patients suffering from diabetes need a simple noninvasive tool to monitor their blood sugar on an hourly basis. Those suffering from seizure require the necessary instrumentation to alarm them before any seizure onset to prevent them from fall injury. The stroke patients need their heart rate recorded constantly. These are only a small number of examples which show how crucial and necessary wearable healthcare systems can be.

      At the Wearable Technology Conference in 2018, the winners of seven wearable device producers were introduced. These winners include the best ones in Lifestyle with the objective of ‘play stress away’; Sports and Fitness for making a football performance device, healthcare for developing a smart eyewear with assistive artificial intelligence capabilities for the blind and visually impaired; Industrial for designing a unique smart and connected industry 4.0 safety shoe; Smart Clothing Challenge for the nonintrusive acquisition of heart signals that will enable pervasive health monitoring, emotional state assessment, drowsiness detection, and identity recognition; Smart Lamp, which allows you to move the light in any direction without moving the lamp; and Connected Living Challenge, for creating accessories linking braintech with fashion design. Headpieces and earrings use electroencephalography (EEG) technology, capturing and providing users with brain data, allowing them to be conscious of their mental state in real time, for example for reducing anxiety and depression or increasing focus or relaxation of the user [1]. This simple example together with the above examples clearly show the diversity in applications of wearable technology. The aim of this book is therefore to familiarise readers with sensors, connections, signal processing tools and algorithms, electronics, communication systems, and networking protocols as well as many applications of wearable devices for the monitoring of mental, metabolic, physical, and physiological states of the human body.

      On the other hand, the development of mobile telephone systems since the early 1990s and its improvement till now together with the availability of large size archiving and wideband communication channels significantly increase the chance of achieving the above objectives without hospitalising the caretakers in hospitals and care units for a long time. This may be considered a revolution in human welfare. More effective and efficient data collection from the human body has therefore a tremendous impact and influence on healthcare and the technology involved. The state of a patient during rest, walking, working, and sleeping can be well recognised if all the biomarkers of the physiological, biological, and behavioural changes of human body can be measured and processed. This requirement sparks the need for deployment of a multisensor and multimodal data collection system on the body. A body sensor network (BSN) therefore is central to a complete solution for patient monitoring and healthcare. Several key applications benefit from the advanced integration of BSNs, often called body area networks (BANs), with the new mobile communication technology [3, 4].

      The main applications of BSNs are expected to appear in the healthcare domain, especially for the continuous monitoring and logging of vital parameters of elderly people or patients suffering from degenerative diseases such as dementia or chronic diseases such as diabetes, asthma, and heart attacks. As an example, a BAN network on a patient can alert the hospital, even before they have a heart attack, through measuring changes in their vital signs, or placing it on a diabetic patient could auto-inject insulin through a pump as soon as their insulin level declines.

      The IEEE 802.15 Task Group 6 (BAN) is developing a communication standard optimised for reliable low-power devices and operation on, in, or around the human body (but not limited to humans) to serve a variety of applications including medical, consumer electronics/personal entertainment, and security [5]. This was approved on 22 July 2011 and the first meeting of IEEE 802.15 wireless personal area network (WPAN) was held on 3 March 2017.

      BSNs have their root within WSNs. Like many advanced technologies, the origin of WSNs can be seen in military and heavy industrial applications. The first wireless network which had some similarity with a modern WSN is the sound surveillance system (SOSUS), developed by the United States military in the 1950s to detect and track Soviet submarines. This network used submerged acoustic sensors – hydrophones – distributed in the Atlantic and Pacific oceans. This sensing technology