Egbert Torenbeek

Essentials of Supersonic Commercial Aircraft Conceptual Design


Скачать книгу

forward sweep inboard and
aft sweep outboard in combination with an area‐ruled fuselage1. Other design aspects were aimed at avoiding the poor aerodynamic efficiency and flying qualities at low speeds of a highly sweptback wing. The unusual inboard forward sweep was intended to compensate for the outboard sweep and the relatively high aspect ratio should contribute to avoiding the high vortex‐induced drag of a slender wing. The STAC rejected the M‐wing concept since the arguments in favor of a more ambitious Mach 2.0 cruise speed that dominated in the decision‐making process. Renewed interest in the development of transonic transport began in the mid 1960s when Boeing and Lockheed generated a series of study layouts based on highly swept wings and area‐ruled fuselages. These concepts complied with the principles of transonic flight successfully applied to fighters designed in the 1950s and the technology of supercritical wing sections developed at NASA‐Langley. It was also realized that a transport aircraft flying at Mach 1.12 in the standard atmosphere could fly without producing a sonic boom at ground level. Since wind and non‐standard temperatures change the boomless cruise speeds between Mach 1.05 and 1.25, a typical cruise speed for transonic flight is Mach 1.20. However, the irregular floor plan due to the mid‐cabin body waist made it difficult to configure the cabin according to the manner that individual customers would like, and thus formed an enduring drawback of this airplane concept.

      In 1989 NASA and the US industry began investigating the potential of HSCT specifications and required technologies. The original SST of the 1960s was planned for Mach 2.70 but the required titanium structure was too heavy, and the HSCT program of Boeing and McDonnell Douglas converged on a more modest Mach 2.40, 300 seat, 9,270 km range jet A fueled aircraft as a focus for technology development. The challenges facing the HSR program were the extremely restrictive constraints placed on emissions, airfield noise, and operation costs. After approximately five years of research it was concluded that insufficient advancement in technology was available to achieve economic viability and to comply with environmental requirements. In particular an acceptable level of the sonic boom could not be achieved and the program was terminated in 1998.

A three view drawing of one of the designs studied in the framework of the European Supersonic Commercial Transport (ESCT).

      

Concorde Tu‐144 ESCT
Maximum take‐off mass tonnes 185 200 320
Range km 6,200 3,500 10,000
Span m 25.6