Ned Mohan

Analysis and Control of Electric Drives


Скачать книгу

rpm. Each motor is coupled to the wheel using a gear mechanism. (a) Calculate the required gear ratio if the vehicle’s maximum speed is 150 km/h, and (b) calculate the torque required from each motor at the maximum speed.

      4 2‐9 Consider the system shown in Fig. 2-14. For JM = 40 g ⋅ cm2 and JL = 60 g ⋅ cm2, what is the optimum gear ratio to minimize the torque required from the motor for a given load‐speed profile? Neglect damping and external load torque.

      Lead‐Screw Mechanism

      1 2‐10 Consider the lead‐screw drive shown in Fig. P2-10. Derive the following equation in terms of pitch s, where = linear acceleration of the load, JM = motor inertia, Js = screw arrangement inertia, and the coupling ratio : Fig. P2-10 Lead‐screw system.

      Wind Turbines and Electric Vehicles

      1 2‐11 In wind turbines, the shaft power available is given as follows, where the pitch‐angle θ is nearly zero to “catch” all the wind energy available: where Cp is the wind‐turbine Coefficient of Performance (a unit‐less quantity), ρ is the air density, Ar is the area swept by the rotor‐blades, and VW is the wind speed, all in MKS units. The rotational speed of the wind turbine is controlled, such that it is operating near its optimum value of the coefficient of performance with Cp = 0.48. Assume the combined efficiency of the gear‐box, the generator, and the power electronic converter to be 90%, and the air density to be 1.2 kg/m3, Ar = 4000 m2. Calculate the electrical power output of such a wind turbine at its rated wind speed of 13 m/s.

      2 2‐12 A wind turbine is rotating at 22 rpm in steady state at a wind speed of 13 m/s and producing 1.5 MW of power. The inertia of the mechanism is 3.4 × 106kg ⋅ m2. Suddenly, there is a short‐circuit on the electric grid and the electrical output goes to zero for two seconds. Calculate the increase in speed in rpm during this interval. Assume that the shaft‐torque remains constant and all other efficiencies to be 100% for the purpose of this calculation.

      3 2‐13 In an electric vehicle, each wheel is powered by its own motor. The vehicle weight is 2000 kg. This vehicle increases in its speed linearly from 0 to 60 mph in 10 seconds. The tire diameter is 70 cm. Calculate the maximum power required from each motor in kW.

      4 2‐14 In an electric vehicle, each of the four wheels is supplied by its own motor. This EV weighs 1000 kg, and the tire diameter is 50 cm. Using regenerative braking, its speed is brought from 20 m/s (72 km/h) to zero in 10 seconds, linearly with time. Neglect all losses. Calculate and plot, as a function of time for each wheel, the following: (a) the electromagnetic deceleration torque Tem in Nm, (b) rotation speed ωm in rad/s, and (c) power Pm recovered in kW. Label the plots.

      Simulation Problems

      1 2‐15 Making an electrical analogy, solve Problem 2-4 .

      2 2‐16 Making an electrical analogy, solve Problem 2-6 .

      Note

      1 (Adapted from chapter 1 of Electric Machines and Drives: A First Course ISBN: 978‐1‐118‐07481‐7 by Ned Mohan, January 2012)

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7RwOUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAOUAAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABJbWcgAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAEAAAAAAA9wcmludFBy b29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAAAAAAAApwcm9vZlNldHVwAAAA AQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJvb2YAAAAJcHJvb2ZDTVlLADhCSU0EOwAAAAACLQAA ABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAFwAAAABDcHRuYm9vbAAAAAAAQ2xicmJv b2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jvb2wAAAAAAExibHNib29sAAAA AABOZ3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAAAEludHJib29sAAAAAABCY2tnT2JqYwAAAAEAAAAA AABSR0JDAAAAAwAAAABSZCAgZG91YkBv4AAAAAAAAAAAAEdybiBkb3ViQG/gAAAAAAAAAAAAQmwg IGRvdWJAb+AAAAAAAAAAAABCcmRUVW50RiNSbHQAAAAAAAAAAAAAAABCbGQgVW50RiNSbHQAAAAA AAAAAAAAAABSc2x0VW50RiNQeGxAcsAAAAAAAAAAAAp2ZWN0b3JEYXRhYm9vbAEAAAAAUGdQc2Vu dW0AAAAAUGdQcwAAAABQZ1BDAAAAAExlZnRVbnRGI1JsdAAAAAAAAAAAAAAAAFRvcCBVbnRGI1Js dAAAAAAAAAAAAAAAAFNjbCBVbnRGI1ByY0BZAAAAAAAAAAAAEGNyb3BXaGVuUHJpbnRpbmdib29s AAAAAA5jcm9wUmVjdEJvdHRvbWxvbmcAAAAAAAAADGNyb3BSZWN0TGVmdGxvbmcAAAAAAAAADWNy b3BSZWN0UmlnaHRsb25nAAAAAAAAAAtjcm9wUmVjdFRvcGxvbmcAAAAAADhCSU0D7QAAAAAAEAEs AAAAAQACASwAAAABAAI4QklNBCYAAAAAAA4AAAAAAAAAAAAAP4AAADhCSU0EDQAAAAAABAAAAB44 QklNBBkAAAAAAAQAAAAeOEJJTQPzAAAAAAAJAAAAAAAAAAABADhCSU0nEAAAAAAACgABAAAAAAAA AAI4QklNA/UAAAAAAEgAL2ZmAAEAbGZmAAYAAAAAAAEAL2ZmAAEAoZmaAAYAAAAAAAEAMgAAAAEA WgAAAAYAAAAAAAEANQAAAAEALQAAAAYAAAAAAAE4QklNA/gAAAAAAHAAAP////////////////// //////////8D6AAAAAD/////////////////////////////A+gAAAAA//////////////////// /////////wPoAAAAAP////////////////////////////8D6AAAOEJJTQQIAAAAAAAQAAAAAQAA AkAAAAJAAAAAADhCSU0EHgAAAAAABAAAAAA4QklNBBoAAAAAA08AAAAGAAAAAAAAAAAAAAqMAAAH CAAAAA0AOQA3ADgAMQAxADEAOQA1ADgANAA1ADMANwAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAQAA AAAAAAAAAAAHCAAACowAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAQAA AAAAAG51bGwAAAACAAAABmJvdW5kc09iamMAAAABAAAAAAAAUmN0MQAAAAQAAAAAVG9wIGxvbmcA AAAAAAAAAExlZnRsb25nAAAAAAAAAABCdG9tbG9uZwAACowAAAAAUmdodGxvbmcAAAcIAAAABnNs aWNlc1ZsTHMAAAABT2JqYwAAAAEAAAAAAAVzbGljZQAAABIAAAAHc2xpY2VJRGxvbmcAAAAAAAAA B2dyb3VwSURsb25nAAAAAAAAAAZvcmlnaW5lbnVtAAAADEVTbGljZU9yaWdpbgAAAA1hdXRvR2Vu ZXJhdGVkAAAAAFR5cGVlbnVtAAAACkVTbGljZVR5cGUAAAAASW1nIAAAAAZib3VuZHNPYmpjAAAA AQAAAAAAAFJjdDEAAAAEAAAAAFRvcCBsb25nAAAAAAAAAABMZWZ0bG9uZwAAAAAAAAAAQnRvbWxv bmcAAAqMAAAAAFJnaHRsb25nAAAHCAAAAAN1cmxURVhUAAAAAQAAAAAAAG51bGxURVhUAAAAAQAA AAAAAE1zZ2VURVh