Группа авторов

Position, Navigation, and Timing Technologies in the 21st Century


Скачать книгу

markers were deployed on ceilings along various routes. On the roof of each forklift, an optical sensor took images that were forwarded to a centralized server for processing. Another low‐cost indoor localization system was proposed in [97] that made use of phone cameras and bar‐coded markers in the environment. The markers were placed on walls, posters, and other objects. If an image of these markers was captured, the pose of the device could be determined with an accuracy of “a few centimeters.” Additional location‐based information (e.g. about the next meeting in the room) could also be displayed.

      An alternative approach to physically deploying markers is to project reference points or patterns onto the environment. In contrast to systems relying only on natural image features, the detection of projected patterns is facilitated by the distinct color, shape, and brightness of the projected features. For example, in [101], the TrackSense system was proposed, consisting of a projector and a simple webcam. A grid pattern is projected onto plain walls in the camera’s field of view. Using an edge detection algorithm, the lines and intersection points are determined. By the principle of triangulation – analogous to stereo vision – the distance and orientation to each point relative to the camera are computed. With a sufficient number of points, TrackSense is able determine the camera’s orientation relative to fixed large planes, such as walls and ceilings.

      37.5.3 Proximity

      Techniques that are based on the presence of the mobile subject in the vicinity of a sensor (with a finite range and analysis capabilities) are referred to as proximity‐based localization approaches. The proximity of the mobile subject can be detected via physical contact or by monitoring a physical quantity in the vicinity of the sensor, such as a magnetic field. When a mobile subject is detected by a single sensor, it is considered to be collocated with it. Several proximity‐based localization techniques have been implemented, involving IR, RFID, and cell identification (Cell‐ID).

      An RFID system consists of RFID readers (scanners) and RFID tags. The RFID reader is able to read the data from RFID tags that are either passive or active. Passive RFID tags rely on inductive coupling and operate without a battery, reflecting the RF signal transmitted to them from a reader and adding information by modulating the reflected signal. Inductive coupling allows the passive tags to receive sufficient energy in the form of RF waves from the nearby RFID reader to perform signal modulation, to transfer their unique serial ID (or other information) back to the reader. But the range of passive RFID tags is very limited (1–2 m), and the cost of the readers is relatively high. Active RFID tags are small transceivers that can actively transmit their ID (or other additional data) in response to an interrogation. Systems based on active RFID use smaller antennas and have a much longer range (tens of meters). LANDMARC [103] utilizes active RFID‐based fixed location reference tags for proximity‐based indoor location calibration.

      The Cell‐ID (or Cell‐of‐Origin) method is based on the principle of capturing the ID of an anchor node that is generating the RF signal with the highest RSSI, and then identifying the mobile subject’s position as having the same coordinates as the anchor node. For example, mobile cellular networks can identify the approximate position of a mobile handset by knowing which cell site the device is using at a given time. Wi‐Fi APs can also be used to obtain the ID of the AP with the highest RSSI and perform localization with respect to that AP. In general, the localization accuracy when using cell‐ID is quite low (50–200 m), depending on the cell size (or Wi‐Fi coverage). The accuracy is often higher in densely covered areas (e.g. urban places) and much lower in rural environments [104].

      37.5.4 Dead Reckoning

      Dead reckoning refers to the use of sensors that provide location updates, calculated based on the last determined position and incrementing that position based on known or estimated speeds over elapsed time. Position and speed estimation is typically based on IMUs, which include multi‐axis accelerometers, gyroscopes, and possibly magnetometers. A disadvantage of dead reckoning is that the inaccuracy of the estimation process is cumulative, so any deviations in the position estimates become larger with time. This is because new positions are calculated entirely from previous positions. Thus, these inertial navigation systems (INSs) are often used to estimate relative rather than absolute location, that is, the change in position since the last update, with some other localization technology (e.g. Wi‐Fi fingerprinting) for obtaining periodic position fixes (absolute location estimates).

Graphs depict </p>
						</div><hr>
						<div class= Скачать книгу