Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
короткие пептиды, а затем и длинные белки. Эти вещества стали для РНК-организмов универсальными помощниками, справляющимися с большинством биологических "работ" гораздо лучше, чем рибозимы.
Откуда же взялась у РНК-организмов способность синтезировать белки? Чтобы ответить на этот вопрос, мы должны поближе познакомиться с рибосомами – сложными молекулярными "машинками", при помощи которых синтезируют белки все современные живые клетки.
Рибосомы у всех живых существ – от бактерий до человека – устроены очень похоже. По-видимому, это означает, что рибосомы в их "современном" виде имелись уже у общего предка всех нынешних форм жизни – у Луки, о котором говорилось в начале главы. Рибосома состоит из двух частей, или субъединиц, – большой (главной) и малой (вспомогательной). Основу обеих субъединиц составляют молекулы рибосомной РНК (рРНК). Снаружи к молекулам рРНК прилегают молекулы рибосомных белков. Поскольку рибосомы играют главную роль в синтезе белка (трансляции), вопрос о происхождении синтеза белка фактически сводится к вопросу о происхождении рибосом.
До самого недавнего времени многим экспертам казалось, что загадка происхождения рибосом вряд ли когда-нибудь будет разгадана. Ведь в природе не осталось никаких "переходных звеньев", то есть более простых молекулярных комплексов, которые могли бы претендовать на роль "предков" рибосом. Однако в начале 2009 года канадские биохимики, похоже, нашли ключик к этой тайне в самой структуре рибосом современных организмов[19].
Они сосредоточились на самой главной части рибосомы – на молекуле РНК, которая называется 23S-pPHK и является основой большой субъединицы рибосомы. Эта молекула весьма велика: она состоит почти из 3000 нуклеотидов. В клетке она сворачивается в сложный трехмерный "клубок". Разные петли, выступы и другие элементы структуры этого "клубка" обеспечивают выполнение разных функций: связь с рибосомными белками, присоединение малой субъединицы, присоединение и удерживание в нужных позициях молекул транспортных РНК (тРНК), которые несут на своих "хвостиках" аминокислоты, необходимые для синтеза белка.
Проведенные ранее эксперименты показали, что рибосомные белки играют в рибосоме вспомогательную роль: они делают ее более стабильной и повышают эффективность ее работы, однако все главные действия, необходимые для синтеза белка, осуществляются не белками, а рибосомными РНК. Это значит, что изначально рибосомы могли состоять только из рРНК, а белки добавились позже. Самый главный этап трансляции – присоединение аминокислот к синтезируемой белковой молекуле – осуществляется молекулой 23S-pPHK. Поэтому логично предположить, что все началось именно с этой молекулы.
Однако молекула 23S-pPHK слишком велика и сложна, чтобы появиться в готовом виде в результате случайного комбинирования нуклеотидов. Таким образом, ключевой допрос состоит в том, могла ли 23S-pPHK произойти от более простой молекулы-предшественницы в результате постепенной эволюции, то есть путем последовательного добавления новых фрагментов.