Группа авторов

Organofluorine Chemistry


Скачать книгу

Lipshutz, B.H. and Sengupta, S. (1992). Organocopper reagents: substitution, conjugate addition, carbo/metallocupration, and other reactions. In: Organic Reactions, vol. 41 (ed. L.A. Paquette), 135–631. Wiley.

      14 14 Hu, M., Ni, C., and Hu, J. (2012). J. Am. Chem. Soc. 134: 15257–15260.

      15 15 Hu, M., He, Z., Gao, B. et al. (2013). J. Am. Chem. Soc. 135: 17302–17305.

      16 16 Hu, M., Ni, C., Li, L. et al. (2015). J. Am. Chem. Soc. 137: 14496–14501.

      17 17 Nakao, Y., Takeda, M., Matsumoto, T., and Hiyama, T. (2010). Angew. Chem. Int. Ed. 49: 4447.

      18 18 Prakash, G.K.S., Krishnamuri, R., and Olah, G.A. (1989). J. Am. Chem. Soc. 111: 393–395.

      19 19 (a) Liu, X., Xu, C., Wang, M., and Liu, Q. (2015). Chem. Rev. 115: 683–730.(b) Singh, R.P. and Shreeve, J.M. (2000). Tetrahedron 56: 7613–7632.

      20 20 Li, L., Ni, C., Xie, Q. et al. (2017). Angew. Chem. Int. Ed. 56: 9971–9975.

      21 21 Xie, Q., Li, L., Zhu, Z. et al. (2018). Angew. Chem. Int. Ed. 57: 13211–13215.

      22 22 Xie, Q., Zhu, Z., Li, L. et al. (2020). Chem. Sci. 11: 276–280.

      23 23 (a) Xie, Q., Ni, C., Zhang, R. et al. (2017). Angew. Chem. Int. Ed. 56: 3206–3210.(b) Xie, Q., Zhu, Z., Li, L. et al. (2019). Angew. Chem. Int. Ed. 58: 6405–6410.

      24 24 Dilman, A.D. and Levin, V.V. (2018). Acc. Chem. Res. 51: 1272–1280.

      25 25 Seppelt, K. (1977). Angew. Chem. Int. Ed. 16: 322–323.

      26 26 (a) Prakash, G.K.S., Hu, J., Wang, Y., and Olah, G.A. (2004). Angew. Chem. Int. Ed. 43: 5203–5206.(b) Prakash, G.K.S., Hu, J., Wang, Y., and Olah, G.A. (2004). Org. Lett. 6: 4315–4317.(c) Prakash, G.K.S., Hu, J., Mathew, T., and Olah, G.A. (2003). Angew. Chem. Int. Ed. 42: 5216–5219.(d) Stahly, G.P. (1989). J. Fluorine Chem. 43: 53–66.(e) Hine, J. and Porter, J.J. (1960). J. Am. Chem. Soc. 82: 6178–6181.

      27 27 (a) Li, Y. and Hu, J. (2005). Angew. Chem. Int. Ed. 44: 5882–5886.(b) Liu, J., Li, Y., and Hu, J. (2007). J. Org. Chem. 72: 3119–3121.(c) Ni, C., Liu, J., Zhang, L., and Hu, J. (2007). Angew. Chem. Int. Ed. 46: 786–789.

      28 28 Aïssa, C. (2009). Eur. J. Org. Chem.: 1831–1844.

      29 29 Zhao, Y., Gao, B., and Hu, J. (2012). J. Am. Chem. Soc. 134: 5790–5793.

      30 30 Miao, W., Ni, C., Zhao, Y., and Hu, J. (2016). Org. Lett. 18: 2766–2769.

      31 31 Miao, W., Zhao, Y., Ni, C. et al. (2018). J. Am. Chem. Soc. 140: 880–883.

      32 32 Gao, B., Zhao, Y., and Hu, J. (2015). Angew. Chem. Int. Ed. 54: 638–642.

      33 33 (a) Kelly, B.D. and Lambert, T.H. (2009). J. Am. Chem. Soc. 131: 13930–13931.(b) Hardee, D.J., Kovalchuke, L., and Lambert, T.H. (2010). J. Am. Chem. Soc. 132: 5002–5003.(c) Vanos, C.M. and Lambert, T.H. (2011). Angew. Chem. Int. Ed. 50: 12222–12226.

      34 34 (a) Nielsen, M.K., Ugaz, C.R., Li, W., and Doyle, A.G. (2015). J. Am. Chem. Soc. 137: 9571–9574.(b) Nielsen, M.K., Ahneman, D.T., Riera, O., and Doyle, A.G. (2018). J. Am. Chem. Soc. 140: 5004–5008.

      Shintaro Kawamuraand Mikiko Sodeoka

      1Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2‐1 Hirosawa, Wako, Saitama, 351‐0198 Japan

      2Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2‐1 Hirosawa, Wako, Saitama, 351‐0198 Japan

      The history of perfluoroalkylation reactions of organic compounds using perfluorocarboxylic acids began in the 1970s, and since then various methods for the generation of perfluoroalkyl radicals or perfluoroalkyl metals as reactive species for perfluoroalkylations have been developed. In this section, we describe perfluoroalkylation reactions with perfluorocarboxylic acids, classified according to the following reaction modes: electrochemical reactions (2.1), reactions using XeF2 (2.2), reactions using copper and silver salts (2.3), photochemical reactions (2.4), and other methods (2.5).

c02h001

c02h002