Silicon PV Modules Under Different Indoor Mounting Configurations Affecting The Rear Reflected Irradiance. Solar Energy, 177, 471-482.
70. Desa, M. K. M., Sapeai, S., Azhari, A. W., Sopian, K., Sulaiman, M. Y., Amin, N., & Zaidi, S. H. (2016). Silicon Back Contact Solar Cell Configuration: A Pathway Towards Higher Efficiency. Renewable and Sustainable Energy Reviews, 60, 1516-1532.
71. Adhyaksa, G. W. P., Johlin, E., & Garnett, E. C. (2017). Nanoscale Back Contact Perovskite Solar Cell Design for Improved Tandem Efficiency. Nanoletters, 17, 5206-5212.
72. Alapatt, G. F., Singh, R., & Poole, K. F. (2012). Fundamental issues in manufacturing photovoltaic modules beyond the current generation of materials. Advances in OptoElectronics, 782150, 1-10.
73. Husain, Alaa A. F., Hasan, W. Z. W., Shafie, S., Hamidon, M. N., & Pandey, S. S. (2018). A Review of Transparent Solar Photovoltaic Technologies. Renewable and Sustainable Energy Reviews, 94, 779-791.
74. Luceňo- Sanchez, A. J., Diez-Pascual, M. A., and Capilla, P. R. (2019). Materials for Photovoltaics: State of the Art and Recent Developments. International Journal of Molecular Sciences, 20(4), 976(1-42).
75. Bhatia, S. C. (2014). Solar Photovoltaic Systems, in: Advanced Energy Renewable Energy Systems, Woodhead Publishing India Pvt. Ltd., pp. 144–157.
76. Shah, A. (2017). Thin Film Solar Cells, in: McEvoy’s Handbook of Photovoltaics (Third Edition): Fundamentals and Applications, S. A. Kalogirou (Ed.), Academic Press, Elsevier Inc., pp. 235 - 307.
77. Szlufcik, J., Sivoththaman, S., Nijs, J. F., & Mertens, R. P., Overstraeten, R.V. (2017). Low-Cost Industrial Technologies for Crystalline Silicon Solar Cells, in: McEvoy’s Handbook of Photovoltaics (Third Edition: Fundamentals and Applications, S. A. Kalogirou (Ed.), Academic Press, Elsevier Inc., pp. 129 - 158.
78. Sundaram, S., Shanks, K., & Upadhyaya, H. (2018). Thin Film Photovoltaics, in : A Comprehensive Guide to Solar Energy Systems: With Special Focus on Photovoltaic Systems, T. M. Letcher and V. M. Fthenakis (Eds.), Academic Press, Elsevier Inc., pp. 361–370.
79. Qarony, W., Hossain, M. I., Hossain, M. K., Uddin, M. J., Haque, A., Saad, A. R., & Tsang, Y. H. (2017). Efficient Amorphous Silicon Solar Cells: Characterization, Optimization, and Optical Loss Analysis. Results Phys., 7, 4287-4293.
80. Fraas, L. M., Zanio, K. R. & Knechtli, R. C. (1978). Multijunction Gallium Arsenide-Gallium Arsenide-Germanium Solar Cell and Process for Fabricating Same, US Patent 4,128,733, Hughes Aircraft Company, California, USA, 1-9.
81. Stirn, R. J. (1983). Gallium Arsenide Single Crystal Solar Cell Structure and Method of Making, US Patent 4,370,510, assigned to California Institute of Technology, Pasadena, USA, 1-7.
82. Ferekides, C. S., Balasubramanian, U., Mamazza, R., Viswanathan, V., Zhao, H., & Morel, D. L. (2004). CdTe Thin Film Solar Cells : Device and Technology Issues. Solar Energy, 77, 823-830.
83. Ramanujam, J. & Singh, U. P. (2017). Copper Indium Gallium Selenide Based Solar Cells – A Review. Energy & Environmental Science, 10, 1306-1319.
84. Kim, K.-Bo, Kim, M., Lee, H.-C., Park, S.-W., & Jeon, C.-W. (2017). Copper Indium Gallium Selenide (CIGS) Solar Cell Devices on Steel Substrates Coated with Thick SiO2-Based Insulating Material. Materials Research Bulletin, 85, 168-175.
85. Dharmadasa, I. M., Bingham, P. A., Echendu, O. K., Salim, H. I., Druffel, T., Dharmadasa, R., Sumanasekera, G. U., Dharmasena, R. R., Dergacheva, M. B., Mit, K. A., Urazov, K. A., Bowen, L., Walls, M., & Abbas, A. (2014). Fabrication of CdS/CdTe-based thin film solar cells using an electrochemical technique. Coatings, 4, 380-415.
86. Kumar, S. G., & Rao, K. S. R. K. (2014). Physics And Chemistry of CdTe/CdS Thin Film Heterojunction Photovoltaic Devices: Fundamental and Critical Aspects. Energy & Environmental Science, 7, 45-102.
87. Kim, S. Y., Mina, M. S., Lee, J., & Kim, J. H. (2019). Sulfur-Alloying Effects on Cu(In,Ga)(S,Se)2 Solar Cell Fabricated Using Aqueous Spray Pyrolysis. ACS Applied Materials & Interfaces, 11, 45702-45708.
88. Adejuyigbe, S. B., Bolaji, B. O., Olanipekun, M. U., & Adu, M. (2013). Development of A Solar Photovoltaic Power System to Generate Electricity for Office Appliances. Engineering Journal, 17, 29-39.
89. Kadhum, J. A., Shneen, S. W., & Hussein, M. A. A. (2018). Utilization of DC Motor-AC Generator System to Convert the Solar Direct Current into 220V Alternating Current. International Journal of Computation and Applied Sciences, 5, 391-396.
90. Nwaigwe, K. N., Mutabilwa, P., & Dintwa, E. (2019). An Overview of Solar Power (PV Systems) Integration Into Electricity Grids. Materials Science for Energy Technologies, 2, 629-633.
1 Email: [email protected]
2
Fabrication and Manufacturing Process of Solar Cell: Part II
Prabhansu1* and Nayan Kumar2
1Mechanical Engineering Department, S.V. National Institute of Technology Surat, Gujarat, India
2Electrical Engineering Department, Muzaffarpur Institute of Technology, Muzaffarpur, Bihar, India
Abstract
The major application of solar cells for highly efficient and reliable thin-films (TF) silicon (Si) is in Si-heterojunction (HJ). In recent years, the module power demand has rapidly increased the solar engineer’s responsibility to develop and fabricate new generation solar cell technology. The p-type mono-Si-PERC is one of them to help meet demand. Efficiency is one of the major parameters of the solar cell; the n-type c-Si based TOPCon solar cell has enhanced the efficiency by 25.8%. For HJ-TF cells, the Cu2O, InGaN, CuInS2, and InP fabrics are presently being explored significantly globally. Also, Thin-film cells, namely CIGS, CdTe, and a-Si: H has received high attention in academia and industry.
Keywords: Solar cell, thin-film Si PV cell, advance semiconductor material, CAPEX, PSC, PERC (passivated emitter and rear cell)
2.1 Introduction
Silicon (Si)-based solar cells dominate the PV showcase (92%) trailed by cadmium-telluride (CdTe, 5%), copper indium gallium selenide (CuInGaSe2 or CIGS, 2%), and amorphous silicon (a-Si:H,~1%). Si wafer with a thickness of around 180 μm is the customary material being utilized for module assembling and it has achieved a critical degree of development at the business level. Its creation cost is a significant worry for vitality applications. About half of the expense of Si-solar cells creation as Si substrate and gadget preparing and module handling represents 20% and 30% individually [1]. Figure 2.1 shows a typical solar cell, whereas Figure 2.2 shows the efficiencies in the record of the deposition of CIGS on different available substrates. It can be observed that the Polyimide (PI) has the highest efficiency with 20.4%.
Another option next to Si solar-based cells is the slender film solar-powered cells manufactured on glass substrates. The primary negative aspects of utilizing glass substrates are the delicate nature of modules, the cost of glass wafer (300-400μm), and low explicit force (kW/kg), and so forth. Explicit force is a significant factor when sunlight-based cells are utilized in space applications. A high explicit force surpassing 2 kW/kg can be accomplished [4] by adaptable sunlight-based cells on polymer films, which is helpful for earthly as well as space applications. Creation cost can be brought down by utilizing adaptable substrates and roll to roll creation (R2R) system.