Группа авторов

Methodologies in Amine Synthesis


Скачать книгу

highlighting through a large number of case studies the pivotal role played by the amino group to unlock practical applications in the fields of biology, medicine, and energy production. Conversely, the synthesis of a number of valuable amino compounds is reported in Chapter 9, from the transformation of renewable biomass resources that already incorporate the amino groups such as chitin, chitosan, and amino acids or by modifying bio‐based compounds, followed by amination. Rare aminosugars, precursors of medicinal compounds, and a wide range of heterocycles are obtained avoiding the use of fossil‐based feedstocks, thus providing a remarkable step forward in the ongoing shift from depleting to renewable resources.

      The final Chapter 10 addresses current applications of TM‐catalyzed aromatic amination in industrial settings by discussing a large number of case studies related to the manufacturing process of pharmaceutical compounds. In addition, with reference to the seminal work by Ullmann, Buchwald, and Hartwig, this contribution points on new concepts still at academic level, but either further extending the applicability of new methodologies, or on the brink of being industrially used. Also approaches with a focus on process intensification and sustainability (flow chemistry and catalyst immobilization) are presented, together with a view of the accompanying questions when applying the methodology of aromatic amination in the pharmaceutical industry. To make aware the reader about these challenges, themes such as the control of elemental impurities, the TM accounting, and the metal recycling are treated as well. Besides being a highly useful and up‐to‐date source of information on the TM‐catalyzed aromatic amination in industry, this contribution will hopefully provide inspiration for academic research in developing new methodologies amenable to industrialization.

      We warmly thank all the distinguished scientists and their coauthors for their rewarding and highly instructive contributions. Without their effort, even more valuable considering it partially coincided with a difficult period at the international level, this volume would have not been possible. Grateful acknowledgments are also addressed to the Wiley‐VCH editorial staff, and in particular to Anne Brennführer, Aruna Pragasam, Elke Maase, and Katherine Wong, who encouraged us at project outset and helped us in a very competent manner in all the phases of the preparation of this book.

       Alfredo Ricci and Luca Bernardi

      Bologna

      07 April 2020

       Zhe Zhouand László Kürti

       Rice University, Department of Chemistry, 6500 Main Street, Houston, TX, 77030, USA

      The majority of the literature in this area concerns the TM‐catalyzed versions of substitution‐type electrophilic amination. Therefore, they will be discussed first in this chapter.

Chemical reactions depict the early examples of Cu-catalyzed electrophilic amination.

      Source: Erdik and Ay [2] and Tsutsui et al. [5].

Chemical reaction depicts the Cu-catalyzed electrophilic amination of organozinc reagents.