Mr. Brandeis well, he had called upon that upholder of respectability, to see the substance that had been identified as nostoc. But he had also called upon Dr. Hamilton, who had a specimen, and Dr. Hamilton had declared it to be lung tissue. Dr. Edwards writes of the substance that had so completely, or beautifully—if beauty is completeness—been identified as nostoc—"It turned out to be lung tissue also." He wrote to other persons who had specimens, and identified other specimens as masses of cartilage or muscular fibers. "As to whence it came, I have no theory." Nevertheless he endorses the local explanation—and a bizarre thing it is:
A flock of gorged, heavy-weighted buzzards, but far up and invisible in the clear sky—
They had disgorged.
Prof. Fassig lists the substance, in his "Bibliography," as fish spawn. McAtee (Monthly Weather Review, May, 1918) lists it as a jelly-like material, supposed to have been the "dried" spawn either of fishes or of some batrachian.
Or this is why, against the seemingly insuperable odds against all things new, there can be what is called progress—
That nothing is positive, in the aspects of homogeneity and unity:
If the whole world should seem to combine against you, it is only unreal combination, or intermediateness to unity and disunity. Every resistance is itself divided into parts resisting one another. The simplest strategy seems to be—never bother to fight a thing: set its own parts fighting one another.
We are merging away from carnal to gelatinous substance, and here there is an abundance of instances or reports of instances. These data are so improper they're obscene to the science of today, but we shall see that science, before it became so rigorous, was not so prudish. Chladni was not, and Greg was not.
I shall have to accept, myself, that gelatinous substance has often fallen from the sky—
Or that, far up, or far away, the whole sky is gelatinous?
That meteors tear through and detach fragments?
That fragments are brought down by storms?
That the twinkling of stars is penetration of light through something that quivers?
I think, myself, that it would be absurd to say that the whole sky is gelatinous: it seems more acceptable that only certain areas are.
Humboldt (Cosmos, 1-119) says that all our data in this respect must be "classed amongst the mythical fables of mythology." He is very sure, but just a little redundant.
We shall be opposed by the standard resistances:
There in the first place;
Up from one place, in a whirlwind, and down in another.
We shall not bother to be very convincing one way or another, because of the over-shadowing of the datum with which we shall end up. It will mean that something had been in a stationary position for several days over a small part of a small town in England: this is the revolutionary thing that we have alluded to before; whether the substance were nostoc, or spawn, or some kind of a larval nexus, doesn't matter so much. If it stood in the sky for several days, we rank with Moses as a chronicler of improprieties—or was that story, or datum, we mean, told by Moses? Then we shall have so many records of gelatinous substance said to have fallen with meteorites, that, between the two phenomena, some of us will have to accept connection—or that there are at least vast gelatinous areas aloft, and that meteorites tear through, carrying down some of the substance.
Comptes Rendus, 3-554:
That, in 1836, M. Vallot, member of the French Academy, placed before the Academy some fragments of a gelatinous substance, said to have fallen from the sky, and asked that they be analyzed. There is no further allusion to this subject.
Comptes Rendus, 23-542:
That, in Wilna, Lithuania, April 4, 1846, in a rainstorm, fell nut-sized masses of a substance that is described as both resinous and gelatinous. It was odorless until burned: then it spread a very pronounced sweetish odor. It is described as like gelatine, but much firmer: but, having been in water 24 hours, it swelled out, and looked altogether gelatinous—
It was grayish.
We are told that, in 1841 and 1846, a similar substance had fallen in Asia Minor.
In Notes and Queries, 8-6-190, it is said that, early in August, 1894, thousands of jellyfish, about the size of a shilling, had fallen at Bath, England. I think it is not acceptable that they were jellyfish: but it does look as if this time frog spawn did fall from the sky, and may have been translated by a whirlwind—because, at the same time, small frogs fell at Wigan, England.
Nature, 87-10:
That, June 24, 1911, at Eton, Bucks, England, the ground was found covered with masses of jelly, the size of peas, after a heavy rainfall. We are not told of nostoc, this time: it is said that the object contained numerous eggs of "some species of Chironomus, from which larvae soon emerged."
I incline, then, to think that the objects that fell at Bath were neither jellyfish nor masses of frog spawn, but something of a larval kind—
This is what had occurred at Bath, England, 23 years before.
London Times, April 24, 1871:
That, upon the 22nd of April, 1871, a storm of glutinous drops neither jellyfish nor masses of frog spawn, but something of a [line missing here in original text. Ed.] railroad station, at Bath. "Many soon developed into a worm-like chrysalis, about an inch in length." The account of this occurrence in the Zoologist, 2-6-2686, is more like the Eton-datum: of minute forms, said to have been infusoria; not forms about an inch in length.
Trans. Ent. Soc. of London, 1871-proc. xxii:
That the phenomenon has been investigated by the Rev. L. Jenyns, of Bath. His description is of minute worms in filmy envelopes. He tries to account for their segregation. The mystery of it is: What could have brought so many of them together? Many other falls we shall have record of, and in most of them segregation is the great mystery. A whirlwind seems anything but a segregative force. Segregation of things that have fallen from the sky has been avoided as most deep-dyed of the damned. Mr. Jenyns conceives of a large pool, in which were many of these spherical masses: of the pool drying up and concentrating all in a small area; of a whirlwind then scooping all up together—
But several days later, more of these objects fell in the same place.
That such marksmanship is not attributable to whirlwinds seems to me to be what we think we mean by common sense:
It may not look like common sense to say that these things had been stationary over the town of Bath, several days—
The seven black rains of Slains;
The four red rains of Siena.
An interesting sidelight on the mechanics of orthodoxy is that Mr. Jenyns dutifully records the second fall, but ignores it in his explanation.
R.P. Greg, one of the most notable of cataloguers of meteoritic phenomena, records (Phil. Mag.: 4-8-463) falls of viscid substance in the years 1652, 1686, 1718, 1796, 1811, 1819, 1844. He gives earlier dates, but I practice exclusions, myself. In the Report of the British Association, 1860-63, Greg records a meteor that seemed to pass near the ground, between Barsdorf and Freiburg, Germany: the next day a jelly-like mass was found in the snow—
Unseasonableness for either spawn or nostoc.
Greg's comment in this instance is: "Curious if true." But he records without modification the fall of a meteorite at Gotha, Germany, Sept. 6, 1835, "leaving a jelly-like mass on the ground." We are told that this substance fell only three feet away from an observer. In the Report of the British Association, 1855-94, according to a letter from Greg to Prof. Baden-Powell, at night, Oct. 8, 1844, near Coblenz, a German, who was known to Greg, and another person saw a luminous body fall close to them. They returned next morning and found a gelatinous mass of grayish color.
According