Ernst Haeckel

The Wonders of Life: A Popular Study of Biological Philosophy


Скачать книгу

one, and the biotone decreases, we have atrophy, and finally death. New biogens are constructed in regeneration. In generation or reproduction groups of biogens (as germ-plasm) are released from the parent in consequence of redundant growth, and form the foundation of new individuals.

      The phenomena of regeneration are extremely varied, and have of late years been made the subject of a good deal of comprehensive experiment, especially on the side of what is called "mechanical embryology." Many of these experimental embryologists have drawn far-reaching conclusions from their somewhat narrow experiments, and have partly urged them as objections to Darwinism. They imagine that they have disproved the theory of selection. Most of these efforts betray a notable lack of general physiological and morphological knowledge. As they also generally ignore the biogenetic law, and take no account of the fundamental correlation of embryology and stem history, we can hardly wonder that they reach the most absurd and contradictory conclusions. Many examples of this will be found in the Archiv für Entwickelungsmechanik. When, however, we make a comprehensive survey of the interesting field of regeneration processes, we discover a continuous series of development from the simplest repair of plasm in the unicellular protists to the sexual generation of the higher histona. The sperm-cells and ova of the latter are redundant growth-products, which have the power of regenerating the whole multicellular organism. But many of the higher histona have also the capacity to produce new individuals by regeneration from detached pieces of tissue, or even single cells. In the peculiar mode of metabolism and growth which accompanies these processes of regeneration, the memory of the plastidule, or the unconscious retentive power of the biogens, plays the chief part (cf. my Perigenesis of the Plastidule, 1875). In the most primitive kinds of the unicellular protists we find the phenomena of death and regeneration in the simplest form. When an unnucleated moneron (a chromaceum or bacterium) divides into two equal halves, the existence of the dividing individual comes to an end. Each half regenerates itself in the simplest conceivable way by assimilation and growth, until it, in turn, reaches the size of the parent organism. In the nucleated cells of most of the protophyta and protozoa it is more complicated, as the nucleus becomes active as the central organ and regulator of the metabolism. If an infusorium is cut into two pieces, only one of which contains the nucleus, this one alone grows into a complete nucleated cell; the unnucleated portion dies, being unable to regenerate itself.

      In the multicellular body of the tissue-forming organisms we must distinguish between the partial death of the various cells and the total death of the whole organism, or cell-state, which they make up. In many of the lower tissue-plants and tissue-animals the communal link is very loose and the centralization slight. Odd cells or groups of cells may be set loose, without any danger to the life of the whole histon, and grow into new individuals. In many of the algæ and liverworts (even in the bryophyllum, closely related to the stone-crop, or sedum)—as well as in the common fresh-water polyp, hydra, and other polyps—every bit that is cut off is capable of growing into a complete individual. But the higher the organization is developed and the closer the correlation of the parts and their co-operation in the life of the centralized stock or person, the slighter we find the regenerative faculty of the several organs. Even then, however, many used-up cells may be removed and replaced by regenerated new cells. In our own human organism, as in that of the higher animals, thousands of cells die every day, and are replaced by new cells of the same kind, as, for instance, epidermic cells at the surface of the skin, the cells of the salivary glands or the mucous lining of the stomach, the blood-cells, and so on. On the other hand, there are tissues that have little or nothing of this repairing power, such as many of the nerve-cells, sense-cells, muscle-cells, etc. In these cases a number of constant cell-individuals remain with their nucleus throughout life, although a used-up portion of their cell-body may be replaced by regeneration from the cytoplasm. Thus our human body, like that of all the higher animals and plants, is a "cell-state" in another sense. Every day, nay, every hour, thousands of its citizens, the tissue-cells, pass away, and are replaced by others that have arisen by cleavage of similar cells. Nevertheless, this uninterrupted change of our personality is never complete or general. There is always a solid groundwork of conservative cells, the descendants of which secure the further regeneration.

      Most organisms meet their death through external or accidental causes—lack of sufficient food, isolation from their necessary environment, parasites and other enemies, accidents and disease. The few individuals who escape these accidental causes of death find the end of life in old age or senility, by the gradual decay of the organs and dwindling of their functions. The cause of this senility and the ensuing natural death is determined for each species of organisms by the specific nature of their plasm. As Kassowitz has lately pointed out, the senility of individuals consists in the inevitable increase in the decay of protoplasm and the metaplastic parts of the body which this produces. Each metaplasm in the body favors the inactive break-up of protoplasm, and so also the formation of new metaplasms. The death of the cells follows, because the chemical energy of the plasm gradually falls off from a certain height, the acme, of life. The plasm loses more and more the power to replace by regeneration the losses it sustains by the vital functions. As, in the mental life, the receptivity of the brain and the acuteness of the senses gradually decay, so the muscles lose their energy, the bones become fragile, the skin dry and withered, the elasticity and endurance of the movements decrease. All these normal processes of senile decay are caused by chemical changes in the plasm, in which dissimilation gains constantly on assimilation. In the end they inevitably lead to normal death.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsK CwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQU FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAWgA4QDASIA AhEBAxEB/8QAHgAAAgICAwEBAAAAAAAAAAAABQYEBwMIAQIJAAr/xABUEAABAwIEBAQDBgQEAwcB ABMBAgMEBREABhIhBxMxQRQiUWEIcYEJFSMykaEWQrHBF1LR4SQz8CVDYnKCkvFToiY0g5MYRGNz syejshlFZcLS0//EABwBAAEFAQEBAAAAAAAAAAAAAAMBAgQFBgAHCP/EAEoRAAECBQIDBAgFAwQB AgUBCQECEQADBCExEkETIlEFFDJhI0JxgZGhsfAzUsHR4QYVJDRDYvFyU7IlRIKSohZUY9IH4jVz k6P/2gAMAwEAAhEDEQA/ANLMp1Gp1CRJTNC1NJFwpaNNlX6DGTOUiVCpzaoxUgKXZa09Ui37YIZi RKeo76YRJe2FkHe19wPfAjJjUuHHlqna2Y22kPm2/fr2x5skpUTVAAMRy9fv2RGsbxlyjJlTaatU kqXpXpQtQ3ItgNnCfOi1NLTbrjLIQFI0G2o9z74KZzYmTWYqoOp6NY6gxvv26YJ0NtyPR4yakpKX 7nSHiNVr7DfvgqV