href="#ulink_897a5a44-c269-56be-be2a-da85b2117dba">65 It is of brass, has a diameter of 24 cm., and is furnished with a substantial mounting. The peculiar features of the figures which represent the several constellations suggest Persian workmanship. In the vicinity of the south pole is an inscription in Cufic characters, telling us that it was “Made by the most humble in the supreme god, Mohammed ben Helal, the astronomer of Monsul, in the year of the Hegira 674.” This year answers to the year 1275 of the Christian era, that is, it was constructed about the same time as the Borgian globe and that belonging to the Dresden collection, briefly described below. Forty-seven constellations are represented. On the horizon circle, in their respective places, we find engraved the words, “East,” “West,” “South,” “North.”
Fig. 13. Northern Hemisphere of Globe by Mohammed ben Helal, 1275.
The Arabic globe, to be found in the Mathematical Salon of Dresden (Fig. 14), has proved to be one of much interest and scientific value to students of astronomy.66 Bode, who described it in the year 1808, refers to its remarkably fine execution and to its Cufic inscriptions as being among the finest extant specimens of early Arabic writing. The sphere is of brass, having a diameter of 14 cm., and is composed of two parts, separable on the line of the ecliptic. It has a brass horizon circle, on which is engraved at the east the word “rising,” and at the west the word “setting.” It is not supplied with a movable meridian circle, but within the horizon circle, from north to south, and from east to west, there are two brass half circles, of the same diameter as the horizon circle and so adjusted as to form one piece with it. Through such an arrangement it is made possible to turn the globe in any desired direction, one half of it being at all times above the horizon. In addition to the above arrangement, there are two movable half circles, attached at the zenith point by a pivot. These half circles are graduated, and are movable, making it possible to find, by means of them, the declination and right ascension of any star. The base, which must be comparatively modern, consists of a circular plate, from which rise four turned support columns, attached at their upper extremities to the two half circles of brass, on which rests the horizon circle.
Fig. 14. Globe of Mohammed ben Muwajed el Ordhi, 1279.
The date of construction cannot be far from 1279, which is determinable from the position of the stars engraved thereon, relative, for example, to the equinoctial points. The maker’s name, “Mohammed ben Muwajed el Ordhi,” appears near the constellation Ursa Major, and is inlaid in silver. There appear, very artistically engraved, the lines representing the principal circles, the outlines of the several constellations, with their names, some of these being inlaid with silver, some with gold. The equator and the ecliptic are represented on the surface of the sphere, each by two engraved parallel lines, and are graduated, the graduation in each instance being represented by four short and one long line, alternating thus by fives throughout the entire three hundred and sixty degrees. The equator is inlaid with gold, the other circles with silver. The names of the twelve constellations in the zodiac are alternately inlaid with gold and silver, while all star names, except as indicated, are inlaid with silver. The constellations represented number forty-eight, the human figures all being clad, turning the front and right face toward the observer.
The Bibliothèque Nationale of Paris possesses two ancient Arabic globes, one of which, neither signed nor dated, has been thought to have been constructed in the eleventh century.67 This was obtained by Jomard, in Egypt, more than sixty years ago. It has a diameter of about 19 cm., is furnished with a horizon circle, which is upheld by four semicircular arms, these, in turn, resting upon a base composed of four flat and rather inartistic supports. The engraving on the surface of the brass sphere closely resembles that on the Dresden globe. A detailed description of this globe has not been obtainable.
A second Paris Arabic globe,68 like the preceding, belongs to the Bibliothèque Nationale (Fig. 15). It has a diameter of something less than 15 cm., and was constructed by Diemat Eddin Mohammed, in the year of the Hegira 981, which in the Christian reckoning corresponds to the year 1573.
Fig. 15. Globe of Diemat Eddin Mohammed, 1573.
The Imperial Library of Petrograd possesses an Arabic globe, constructed in the year 1701.69 It is described by Dorn as a fine example of the globe maker’s art, closely resembling, in its general features, the Arabic globe in the collection of the Royal Asiatic Society of London. It has a diameter of about 19 cm., rests upon an ornamental tripod base, and is adjusted to turn within a brass circle, which circle is fitted into a larger one, so marked and graduated as to represent four concentric circles. The first or inner circle, representing the horizon, is divided into thirty-six divisions of ten degrees each; on the second circle the degrees are indicated by letters; on the third circle appear the twelve signs of the zodiac and the four principal directions, east, west, north, south; the fourth circle is divided into thirty-six parts, formed by the extension of the lines which divide the first, or horizon circle, into thirty-six parts. On the last circle the names of one hundred and four cities and countries are given. Not far from the north pole is an inscription which gives us the name of the maker and the date of construction. Therein we read that it was completed in the year 1113 of the flight of the Prophet, or in the year 1701 of Christian reckoning, by Ridhwan, for Maulana Hassan Efendi, who, toward the end of the seventeenth century, was director of the astronomical observatory of Cairo, and gave substantial encouragement to makers of globes and of other instruments employed in astronomical studies. The equator, the ecliptic, and the parallels are represented, the first two by parallel circles which are crossed or joined by lines dividing them into seventy-two principal parts, each part being again subdivided into fifths. The close resemblance of this example to the earlier known Arabic globes suggests that there was little, if any, progress among those peoples in the art of globe construction since the eleventh century.
Fig. 15a. Anonymous Arabic Globe, 1635.
NOTES
49 Delambre, J. B. J. Histoire de l’Astronomie ancienne. Paris, 1817. See Vol. I, pp. 372, 516, containing references to globes, celestial and terrestrial, constructed in India and in China about the years 450 and 724 A.D.
50 Peschel, O. Geschichte der Erdkunde bis auf C. Ritter und A. V. Humboldt. Berlin, 1877. See pp. 145–160, wherein reference is made to their lack of interest in descriptive geography; Beazley. Dawn of Modern Geography. Vol. I, chap. vii.
51 Günther, S. Studien zur Geschichte der mathematischen und physikalischen Geographie. Halle, 1877. Heft 2; Ibn Abî Ja’kûb an-Nadîm. Katâb al-Fihrist (Book of Records), ed. by Gustav Flugel. Leipzig, 1871–1872. 2 vols. The greater part of this Arabic work was written about the year 987 AD Edrisi states it as “the opinion of philosophers, of illustrious savants, and of skilled observers in the knowledge of celestial bodies, that the earth is round as a sphere.” See Edrisi,