Группа авторов

Biobased Composites


Скачать книгу

956–967.

      16 16 Dweib, M.A., Hu, B., Shenton, H.W., and Wool, R.P. (2006). Bio‐based composite roof structure: manufacturing and processing issues. Compos. Struct. 74: 379–388.

      17 17 Boey, F.Y.C. and Lye, S.W. (1992). Void reduction in autoclave processing of thermoset composites. Part 1: high pressure effects on void reduction. Composites 23: 261–265.

      18 18 Xie, L., Yu, H., Yang, W. et al. (2016). Preparation in vitro degradability cytotoxicity and in vivo biocompatibility of porous hydroxyapatite whisker‐reinforced poly(l‐lactide) biocomposite scaffolds. J. Biomater. Sci. Polym. Ed. 27 (6): 505–528.

      19 19 Li, X., Cui, R., Liu, W. et al. (2013). The use of nanoscaled fibers or tubes to improve biocompatibility and bioactivity of biomedical materials. J. Nanomater. 2013: 1–16.

      20 20 Lu, L., Peter, S.J., Lyman, M.D. et al. (2000). In vitro degradation of porous poly (l‐lactic acid) foams. Biomaterials 21: 1595–1605.

      21 21 Chen, M.K. and Badylak, S.F. (2001). Small bowel tissue engineering using small intestinal submucosa as a scaffold. J. Surg. Res. 99 (2): 352–358.

      22 22 Rogers, L., Said, S.S., and Mequanint, K. (2013). The effects of fabrication strategies on 3D scaffold morphology porosity and vascular smooth muscle cell response. J. Biomater. Tissue Eng. 3: 300–311.

      23 23 Prasad, A., Sankar, M.R., and Katiyar, V. (2017). State of art on solvent casting particulate leaching method for orthopedic scaffolds fabrication. Mater. Today Proc. 4 (2): 898–907.

      24 24 Okamoto, M. (2006). Biodegradable polymer/layered silicate nanocomposites: a review. In: Handbook of Biodegradable Polymeric Materials and their Applications (eds. S. Mallapragada and B. Narasimhan), 153–197. Los Angeles: American Scientific Publishers.

      25 25 Kim, S.S., Ahn, K.M., Park, M.S. et al. (2007). A poly(lactideco‐glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. J. Biomed. Mater. Res. Part A 80: 206–215.

      26 26 Taylor, P.M., Sachlos, E., Dreger, S.A. et al. (2006). Interaction of human valve interstitial cells with collagen matrices manufactured using rapid prototyping. Biomaterials 27 (13): 2733–2737.

      27 27 Aranaz, I., Gutierrez, M.C., Ferrer, M.L., and Monte, F. (2014). Preparation of chitosan nanocomposites with a macroporous structure by unidirectional freezing and subsequent freeze‐drying. Marine Drugs 12 (11): 5619–5642.

      28 28 Hottot, A., Vessot, S., and Andrieu, J. (2004). A direct characterization method of the ice morphology relationship between mean crystals size and primary drying times of freeze‐drying processes. Dry. Technol. 22: 2009–2021.

      29 29 Das, S., Hollister, S.J., Flanagan, C. et al. (2003). Freeform fabrication of Nylon‐6 tissue engineering scaffolds. Rapid Prototyp. J. 9 (1): 43–49.

      30 30 Xie, J., Li, X., and Xia, Y. (2008). Putting electrospun nanofibers to work for biomedical research. Macromol. Rapid Commun. 29: 1775–1792.

      31 31 Xu, X. and Zhou, M. (2008). Antimicrobial gelatin nanofibers containing silver nanoparticles. Fibers Polym. 9: 685–690.

      32 32 Hong, H., Dong, N., Shi, J. et al. (2009). Fabrication of a novel hybrid heart valve leaflet for tissue engineering: an in vitro study. Artif. Organs 33: 554–558.

      33 33 Jahnavi, S., Kumary, T., Bhuvaneshwar, G. et al. (2015). Engineering of a polymer layered bio‐hybrid heart valve scaffold. Mater. Sci. Eng. C 51: 263–273.

      34 34 Malheiro, V.N., Caridade, S.G., Alves, N.M., and Mano, J.F. (2010). New poly(ε‐caprolactone)/chitosan blend fibers for tissue engineering applications. Acta Biomater. 6 (2): 418–428.

      35 35 Nirmal, R.S. and Nair, P.D. (2013). Significance of soluble growth factors in the chondrogenic response of human umbilical cord matrix stem cells in a porous three‐dimensional scaffold. Eur. Cells Mater. 26: 234–251.

      36 36 Dutta, P.K., Tripathi, S., Mehrotra, G.K., and Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 114 (4): 1173–1182.

      37 37 Al‐Hassan, A.A. and Norziah, M.H. (2012). Starch–gelatin edible films: water vaporpermeability and mechanical properties as affected by plasticizers. Food Hydrocoll. 26 (1): 108–117.

      38 38 Yu, Z., Alsammarraie, F.K., Nayigiziki, F.X. et al. (2017). Effect and mechanism of cellulose nanofibrils on the active functions of biopolymer‐based nanocomposite films. Food Res. Int. 99 (1): 166–172.

      39 39 Dang, K.M. and Yoksan, R. (2016). Morphological characteristics and barrier properties of thermoplastic starch/chitosan blown film. Carbohydr. Polym. 150: 40–47.

      40 40 Wu, J., Li, Y., and Zhang, Y. (2017). Use of intraoral scanning and 3‐dimensional printing in the fabrication of a removable partial denture for a patient with limited mouth opening. J. Am. Dent. Assoc. 148 (5): 338–341.

      41 41 Gross, B.C., Erkal, J.L., Lockwood, S.Y. et al. (2014). Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86 (7): 3240–3253.

      42 42 Zopf, D.A., Hollister, S.J., Nelson, M.E. et al. (2013). Bioresorbable airway splint created with a three‐dimensional printer. N. Engl. J. Med. 368 (21): 2043–2045.

      43 43 Schubert, C., Langeveld, M.C., and Donoso, L.A. (2014). Innovations in 3D printing: a 3D overview from optics to organs. Br. J. Ophthalmol. 98 (2): 159–161.

      44 44 Roh, H.S., Lee, C.M., Hwang, Y.H. et al. (2017). Addition of MgO nanoparticles and plasma surface treatment of three‐dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Mater. Sci. Eng. C 74: 525–535.

      45 45 Meng, J., Xiao, B., Zhang, Y. et al. (2013). Super‐paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci. Rep. 3: 2655.

      46 46 Okamoto, M. and John, B. (2013). Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog. Polym. Sci. 38: 1487–1503.

      47 47 Hamzeh, Y., Ashori, A., and Mirzaei, B. (2011). Effects of waste paper sludge on the physico‐mechanical properties of high‐density polyethylene/wood flour composites. J. Polym. Environ. 19 (1): 120–124.

      48 48 Stark, N.M. and Matuana, L.M. (2004). Surface chemistry changes of weathered HDPE/wood‐flour composites studied by XPS and FTIR spectroscopy. Polym. Degrad. Stab. 86: 1–9.

      49 49 Kasuga, T., Ota, Y., Nogami, M., and Abe, Y. (2001). Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials 22: 19–23.

      50 50 Chiu, W., Chang, Y., Kuo, H. et al. (2008). A study of carbon nanotubes/biodegradable plastic polylactic acid composites. J. Appl. Polym. Sci. 108 (5): 3024–3030.

      51 51 John, M.J. and Thomas, S. (2008). Biofibres and biocomposites. Carbohydr. Polym. 71: 343–364.

      52 52 Sydenstricker, T.H., Mochnaz, S., and Amico, S.C. (2003). Pull‐out and other evaluations in sisal‐reinforced polyester biocomposites. Polym. Test 22: 375–380.

      53 53 Ray, P.K., Chakravarty, A.C., and Bandyopadhyay, S.B. (1976). Fine structure and mechanical properties of jute differently dried after retting. J. Appl. Polym. Sci. 20 (7): 1765–1767.

      54 54 Semsarzadeh, M.A. (1986). Fiber matrix interactions in jute reinforced polyester resin. Polym. Compos. 7: 23–25.

      55 55 Zeronian, S.H., Kawabata, H., and Alger, K. (1990). Factors affecting the tensile properties of non‐mercerized and mercerized cotton fibers. Text. Res. J. 60 (3): 179–183.

      56 56 Paiva, J.M.F. and Frollini, E. (2006). Unmodified and modified surface sisal fibers as reinforcement of phenolic and lignophenolic matrices composites: thermal analyses of fibers and composites. Macromol. Mater. Eng. 291: 405–417.

      57 57 Agrawal, R., Saxena, N., Sreekala, M., and Thomas, S. (2000). Effect of treatment on the thermal conductivity and thermal diffusivity of oil‐palm–fiber‐reinforced phenolformaldehyde composites. J. Polym. Sci. B Polym. Phys. 38: 916–921.

      58 58 Vandeweyenberg,