Alan M. Turing

Computing Machinery and Intelligence / Können Maschinen denken? (Englisch/Deutsch)


Скачать книгу

machine was able to answer like this in the viva voce? I do not know whether he would regard the machine as ‘merely [447] artificially signalling’ these answers, but if the answers were as satisfactory and sustained as in the above passage I do not think he would describe it as ‘an easy contrivance’. This phrase is, I think, intended to cover such devices as the inclusion in the machine of a record of someone reading a sonnet, with appropriate switching to turn it on from time to time.

      In short then, I think that most of those who support the argument from consciousness could be persuaded to abandon it rather than be forced into the solipsist position. They will then probably be willing to accept our test.

      [56]I do not wish to give the impression that I think there is no mystery about consciousness. There is, for instance, something of a paradox connected with any attempt to localise it. But I do not think these mysteries necessarily need to be solved before we can answer the question with which we are concerned in this paper.

      (5) Arguments from Various Disabilities. These arguments take the form, “I grant you that you can make machines do all the things you have mentioned but you will never be able to make one to do X”. Numerous features X are suggested in this connexion. I offer a selection:

      Be kind, resourceful, beautiful, friendly (p. 448), have initiative, have a sense of humour, tell right from wrong, make mistakes (p. 448), fall in love, enjoy strawberries and cream (p. 448), make some one fall in love with it, learn from experience (pp. 456 f.), use words properly, be the subject of its own thought (p. 449), have as much diversity of behaviour as a man, do something really new (p. 450). (Some of these disabilities are given special consideration as indicated by the page numbers.)

      No support is usually offered for these statements. I believe they are mostly founded on the principle of scientific induction. A man has seen thousands of machines in his lifetime. From what he sees of them he draws a number of [58]general conclusions. They are ugly, each is designed for a very limited purpose, when required for a minutely different purpose they are useless, the variety of behaviour of any one of them is very small, etc., etc. Naturally he concludes that these are necessary properties of machines in general. Many of these limitations are associated with the very small storage capacity of most machines. (I am assuming that the idea of storage capacity is extended in some way to cover machines other than discrete-state machines. [448] The exact definition does not matter as no mathematical accuracy is claimed in the present discussion.) A few years ago, when very little had been heard of digital computers, it was possible to elicit much incredulity concerning them, if one mentioned their properties without describing their construction. That was presumably due to a similar application of the principle of scientific induction. These applications of the principle are of course largely unconscious. When a burnt child fears the fire and shows that he fears it by avoiding it, I should say that he was applying scientific induction. (I could of course also describe his behaviour in many other ways.) The works and customs of mankind do not seem to be very suitable material to which to apply scientific induction. A very large part of space-time must be investigated, if reliable results are to [60]be obtained. Otherwise we may (as most English children do) decide that everybody speaks English, and that it is silly to learn French.

      There are, however, special remarks to be made about many of the disabilities that have been mentioned. The inability to enjoy strawberries and cream may have struck the reader as frivolous. Possibly a machine might be made to enjoy this delicious dish, but any attempt to make one do so would be idiotic. What is important about this disability is that it contributes to some of the other disabilities, e. g. to the difficulty of the same kind of friendliness occurring between man and machine as between white man and white man, or between black man and black man.

      The claim that “machines cannot make mistakes” seems a curious one. One is tempted to retort, “Are they any the worse for that? ” But let us adopt a more sympathetic attitude, and try to see what is really meant. I think this criticism can be explained in terms of the imitation game. It is claimed that the interrogator could distinguish the machine from the man simply by setting them a number of problems in arithmetic. The machine would be unmasked because of its deadly accuracy. The reply to this is simple. The machine (programmed for playing the game) would not attempt to give the right answers to the arithmetic problems. It would deliberately introduce mistakes in a manner calculated to confuse the interrogator. A mechanical fault would [62]probably show itself through an unsuitable decision as to what sort of a mistake to make in the arithmetic. Even this interpretation of the criticism is not sufficiently sympathetic. But we cannot afford the space to go into it much further. It seems to me that this criticism depends [449] on a confusion between two kinds of mistake. We may call them ‘errors of functioning’ and ‘errors of conclusion’. Errors of functioning are due to some mechanical or electrical fault which causes the machine to behave otherwise than it was designed to do. In philosophical discussions one likes to ignore the possibility of such errors; one is therefore discussing ‘abstract machines’. These abstract machines are mathematical fictions rather than physical objects. By definition they are incapable of errors of functioning. In this sense we can truly say that ‘machines can never make mistakes’. Errors of conclusion can only arise when some meaning is attached to the output signals from the machine. The machine might, for instance, type out mathematical equations, or sentences in English. When a false proposition is typed we say that the machine has committed an error of conclusion. There is clearly no reason at all for saying that a machine cannot make this kind of mistake. It might do nothing but type out repeatedly ‘0 = 1’. To take a less perverse example, it might have some method for drawing conclusions by scientific induction. We must expect such a method to lead occasionally to erroneous results.

      [64]The claim that a machine cannot be the subject of its own thought can of course only be answered if it can be shown that the machine has some thought with some subject matter. Nevertheless, ‘the subject matter of a machine’s operations’ does seem to mean something, at least to the people who deal with it. If, for instance, the machine was trying to find a solution of the equation x2 - 40x - 11 = 0 one would be tempted to describe this equation as part of the machine’s subject matter at that moment. In this sort of sense a machine undoubtedly can be its own subject matter. It may be used to help in making up its own programmes, or to predict the effect of alterations in its own structure. By observing the results of its own behaviour it can modify its own programmes so as to achieve some purpose more effectively. These are possibilities of the near future, rather than Utopian dreams.

      The criticism that a machine cannot have much diversity of behaviour is just a way of saying that it cannot have much storage capacity. Until fairly recently a storage capacity of even a thousand digits was very rare.

      The criticisms that we are considering here are often disguised forms of the argument from consciousness. Usually if one maintains that a machine can do one of these things, and describes the kind of method that the machine could use, one will not make [450] much of an impression. It is [66]thought that the method (whatever it may be, for it must be mechanical) is really rather base. Compare the parenthesis in Jefferson’s statement quoted on p. 21.

      (6) Lady Lovelace’s Objection. Our most detailed information of Babbage’s Analytical Engine comes from a memoir by Lady Lovelace. In it she states, “The Analytical Engine has no pretensions to originate anything. It can do whatever we know how to order it to perform” (her italics). This statement is quoted by Hartree (p. 70) who adds: “This does not imply that it may not be possible to construct electronic equipment which will ‘think for itself’, or in which, in biological terms, one could set up a conditioned reflex, which would serve as a basis for ‘learning’. Whether this is possible in principle or not is a stimulating and exciting question, suggested by some of these recent developments. But it did not seem that the machines constructed or projected at the time had this property”.

      I am in thorough agreement with Hartree over this. It will be noticed that he does not assert that the machines in question had not got the property, but rather that the evidence available to Lady Lovelace did not encourage her to believe that they had it. It is quite possible that the machines in question had in a sense got this property. For suppose that some discrete-state