Алекс Ликерман

Непобедимый разум. Наука о том, как противостоять трудностям и невзгодам


Скачать книгу

Happiness Is a Stochastic Phenomenon // Psychology Science, 1996. Vol. 7. P. 186–189.

      14

      Diener E., Lucas R., Scollon C. Beyond the Hedonic Treadmill: Revising the Adaptation Theory of Well-Being // American Psychologist, 2006. Vol. 61. P. 305–314.

      15

      Lucas R. et al. Reexamining Adaptation and the Set Point Model of Happiness: Reactions to Change in Marital Status // Journal of Personality and Social Psychology, 2004. Vol. 84. P. 527–539.

      16

      Headey B. The Set-Point Theory of Well-Being Has Serious Flaws: On the Eve of a Scientific Revolution? // Social Indicators Research, 2010. Vol. 97. P. 7–21.

      17

      Headey B. The Set-Point Theory of Well-Being Has Serious Flaws: On the Eve of a Scientific Revolution? // Social Indicators Research, 2010. Vol. 97. P. 7–21.

      18

      Vella-Broderick D., Park N., Peterson C. Three Ways to Be Happy: Pleasure, Engagement, and Meaning – Findings from Australian and U.S. Samples // Social Indicators Research, 2009. Vol. 90. P. 165–179.

      19

      Headey B. The Set-Point Theory of Well-Being Has Serious Flaws: On the Eve of a Scientific Revolution? // Social Indicators Research, 2010. Vol. 97. P. 7–21.

      20

      Lyubomirsky S., Sheldon K., Schkade D. Pursuing Happiness: The Architecture of Sustainable Change // Review of General Psychology, 2005. Vol. 9. P. 111–131.

      21

      Switzer G. The Effect of a School-Based Helper Program on Adolescent Self-Image, Attitudes, and Behavior // Journal of Early Adolescence, 1995. Vol. 15. P. 429–455.

      22

      Sappington A. A., Bryant J., Oden C. An Experimental Investigation of Viktor Frankl’s Theory of Meaningfulness in Life // International Forum for Logotherapy, 1990. Vol. 13. P. 125–130.

      23

      Robak R., Griffin P. Purpose in Life: What Is Its Relationship to Happiness, Depression, and Grieving? // North American Journal of Psychology, 2000. Vol. 2. P. 113–120.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAIBAQIBAQICAgICAgICAwUDAwMDAwYEBAMFBwYHBwcGBwcICQsJCAgKCAcHCg0KCgsMDAwMBwkODw0MDgsMDAz/2wBDAQICAgMDAwYDAwYMCAcIDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCAMmAjoDAREAAhEBAxEB/8QAHgABAAEDBQEAAAAAAAAAAAAAAAIBAwQFBgcICQr/xABmEAABAgUDAgQDBAcEBQULABsBAgMABAUGEQcSIQgxCRNBURQiYQoycYEVIzWCkaGyFkKxwSQzUtHwJWJ24fEXGBk0OVhylrO00iY4Q1d0ldM2N0RjdZKTGidTVmZnc4aio7XE5P/EAB0BAQEBAQEAAwEBAAAAAAAAAAABAgMEBQcIBgn/xABAEQEBAAIBAwMDAgQDBAgFBQAAAQIRIQMEMQUSQQZRYQdxEyIygZGhsRRCwfAVIzNSctHh8SRiorLSCBYlQ4L/2gAMAwEAAhEDEQA/APZCnsn4ROEHHOT7cmPiK9m2Q3LgkDHH8oQTW1syOBzjAi60La5fDuQr8s94lgvJZIRyDnHpGuRkIQTgEZB7ekGbWTLg4Axxn0jcZXkY289u0X4FsgExJNiTYG/H+MX8CThyMkjI4/KLKLTmMk4OSfSM5SQSbHA4xFgvIQducRqT5E2gEnOeccA84+sJeQKAVfNyB6e0QWwwVnKeRuzx2iwXUo+UJHJ7njtC8G2QkKbSQec/SNpKu+V6k4xBnaSGyjO4/T8YG1A2SlJAIz3z6QTapGPTn0gLjWU4G38DASSgoBOTkentAVDQP3sH+cavgRDe89sARPIgG8LOTtzEFxpvA98RuQTIyfQY4xjtE8iPlA5z/H3jIoUAI7GNX7AEcdoyKFsCAp5AUCIsggpkpGT/ANsQQUnI7YgKBvn3gJBsknMWTYmljaeO8X2ioZxE8UT2j0HeLvYYwYTiiRSCP8ItgqhABx6nviM650GzJ2+sJBaUyBngk98ws0KttfL9fwxFxE0oKR80KKJQC5gfNxiMinlkJG04/H0gILbUDz6/nAQKM8k5IP5RYKqSEkggbSeMf5w0I+SB3OfXvEXdRWk547Ec8wJdLDrG3BB5iWbbWXG95CsgDOcGMCKAAgpxx3B94CYwEkdwR2iw/K2tIJHGBDYsuDbyeR27xBYKgScbSBGN87FxI+YZ9fSNbFFqyCYlohjHb8Mxm8i4hZTxjCQY1KJbjs/Hn3MWi2TuPHfPP1iCq2MY5ELPkWZqXCmyD8yVYBjGWKxQDHv/ADhwmmPJSv8AoiOT6nj8TGssV2vJlyj1zzmMyLtFbRTwcAiKqHwxSrPp34jNSZL6QNncExvjSVfCNyfvEZi64RNlr2J/IxReSkE++IoBHPuMxJBVDHB75h8iK04QQOD/AIwv3EfLKsc94olLsJbTnnOc9+0SRbWQhnb6HnmNyM7+FXGsfdHfvxwItiopbJRwdwPaJMRcS0C4FAdz6xdJuL3w2VcKP8cRUlTS1tOQcpP8otjKakYUTFsDy9wx6w9ouFon1JPuT6w9okloAepOYaEtnJBMLORcDYORwY1BFEsEZBzkehiaEi2eBge+RCwQS1gYhJoSSPlIPMUCngcEiM0UQjH+UaFFJz2HeGhTsYlgbccxPaIklP4RbBRwZIgIqazntEs4EUMFHr68CLIJJRjjB/GM2ipyVD+cKKgZPGQPeEgqpOB3i6gqke/eGvsLgTnvGhQNE8cRLBLaQcCKKbe5wIkFAnaM8ZBhIJlKQeTx+OcRRXyQ0M4xAQIGMYOfpCiAbAPbPvGfaI+TziEgi60En2yIaEMb8nuRzFoitIKB9IxoW1MJITgYx+cNLLpF9sJRjtzCrKtONkI5ASADj6/WJpdrYbG7A4IHc+sNLtNaQSfQCAsLSG0j7mDGdDHLSU7sJ7RjUEdvzDv2wOYSc7FxKA4r0J9o1oUDfHHyj14hrgQ2hKTkEQkmhIAFBPbiGuBEIBWeMn/KMSCmdpx2Bi3yuuEfLKlK4AGO+Yz7bUU+DP4RPZQpqcyDQ5xk/wCJjtfJE3GycjkAnjB5jIioBWcjOfUw1BHZtPbjuMRnQklsYEX2i8ElCRx+Maguto+bgEe0BJDOFfSILi05PGI1pIuJQNo5B3e/rFk15VaWxhJ4J9e8PaD7TbR+TcSQPpiJlNCiWyRntjtEkF3GFAnJ45jozEiOcEcHkiDS600PROSkc8wYqfl7zkjHPHMWRF0NggDB47RrQFATkjGc9oSCgJTnHHpj3EUSYwrGSMxJoXwM4HB98+kUSSScEYIPaAqjuRjgQFUj5uCM+kAWrcecED+MBRA3Ee0BMoCT7QDYnGP5wFFNnAI7QDy8QEdsBHy4mvkV2+kUA1u9ICvkgnMNCobGICnkJznGYApoK/CAoWee3EZ9oFrH4CHtEVIi+0EoB+sUXEt8e+ICpTyPrAS2bccciAoeT27QBaQG/wCcBbOfXsPaAmoFQySTAUHbAgKHdt5/wgKKSSDjOAfyMBadWAO3J9ImhYThSj6duIaEko2nBGcZiiRA2cY+WEgiW9yx7984jPtFtbRCTk8YPbk/hE0Md07jwMe+D2iNxR5OB6AHtkZgqw4ElQyMcYMZppaALS8g59zGdC6sJWpOxCRtT+Mav4NI7A2g443jtj/OHgUUkJWD6j+EZoitPmJxiAeWACPUQECNm08cHHMTYiW8DJ5iWfK7XCCE5GDkRpDyVH+7DQsU4FMk2cEJyQc/+kYZedpFxKkPp3pPB43CG1SQxsR6DEJBEMblnntAVQnbz3OM/hAXm0hSRnPfiAkgdxmAqlYR2EBJKd6h+MWC8kA/ewfrG9M5C29yTjjj+EFl+62uXKVDjgY59ozlNqq20lQ9iO31iyJaqWyEgDj157RWYmFFZGRyrI5g1U0ENJOO4+kWXTOmQy4HgeOCM8943EVyB9P8oCjjmxJHYHvAU3Bahg4AgJJaCSnOFD0BPIia0MlLWxOfuxTaqE5I9feAkU7lHH/bBNxIN7Cc+sDahTkkj0EFVbTlX+MBcQhJPvn3gJpaTjtgeohBRTPPA4jWpRBxgt4zyTGU2j5WD7wJRTUFA1jj/KLICWySeOPxiCYZ44gm1QztH4w1WbUlS2OR39cQalW/JxGpPuqhahYKFkxkR8rntBN/c8v8oKqhvHaCL/wxBHrmLo2ls47cD+MQ2ivgHP4wVaUjck4GOf4wEQgqBznHrAVQNwAA7jiAqqW4H+EEUUj5ee8F2t+V8w4PtBLdITMuocY3JPqOYErGKMDCQR/vgqO87hxzjiAmF8fT+UBL7qCU8EQGK44ouduwx7ZMYtXhBRCQQeCfSIsQUDuyTjnj2g0KaCRkDPtBmXlaSwp1OcAHPJiWbaSDAB7gnb/GEgkVcEBPPrFTSwWeO/r3jOlWnRsxkd4ytSSvek8cQmXCIhIV6AnPrEEVZHGR6xm0VbPBx7cRYRPav/aTF1RbkWSqno47Z/L5jG8pyk8LqGcpJH3fp3iaVXaBxg/MeTiIHw4cJ788RZBbMuUEjKj68+kTWhPJDYBHrAGwU4gLjTefzgMlls7s5PB4jciWqqBCz249PSKloUkJx6QSVJDag4PX1wYLaKa5CsEZHbPEXSbUUg7snGMdswsJUFIK+6eMe/IiNRcRgp5HBA/LmLGb5XmFhPGcZ9o1ETA3KBHr6RRTyt5ORx9YaEgEoXtycmAupIb5HHPfEBdS6VK+bKufWCa+y8lngHOYtEwgDsIiaFJKweOD6e0F0oGcHsBmBtINgEf4iCbU2YOYLN/K62CUjMWRdpEcY7RrSbijiSpPPMKnC2GuPWM6qnkZEJsn5SDOMRdVN8qhiJ7WUktg8Yi6amkktBMSxNmwRdbRFTIMGtoFkExPau1FMjEQn5ULOc+0XRqVHyefaIugN5VgQ2LyUYI946RLpUj3jNhFpTeSYyopvgwZ5C1nPfBxA2p5JTjmC7V28dziFTfKi04IJEF2szCtqfl/wgumMXtvB49/aAosZRwAfp7wEFNDbkjGRj8ICIT8gyf5cmAotewdu3vAWVvbRycd+TGLRaVlefQY74iNS8KhsqTjOMfzi+1JUlM5AB+b6fWGqSoqbyCnuPTAhpdoBnBBT/GISqfDkAhPr7wXYGQlOD3B4z2EDfK09L4QO0ZsVYUwrkJzjHeOdnwLe3YocnGfeJoSDZdxzjiL7RQMFsnHA9eYaF4ShI7o/iYv9xcpbZTINYI9f6jHaxjbJSyknJ7/AEETUNqKlxz2A/mICnkgKOBjHbEFt+yiWgFe/wBIKgtncvjkfwjNi7SbYyO2DF1BVDe09+faJJGb+GQwCMdh9TGizgyE+o5hGdJhnIyc9veAmGhsHGSf5RqQCng5GPwMaEQgHj88wFDLgqzjHtGdLtbXK/MCCR6ZhcTaaEAOYBJ298ekSfhF5tOSMgxsSDPme+QYCRRjJVnn1gLC17jkbiIzKL0k4pZGfT/CLKM8JGwHEb1tLU87v8ImtM7qXl/lz6w8rtLbjHqYaSa+VfL49IaXcCgJ9PzhMSVUIxxG9M7SI29+5gKBGBAUKMHn1gu0vL+kEPL+kBUN8e0BXYMQXg2fWJTRs+sIaU2mGjShT9IqIlHPtANkF2ieIlhKr5ZiSLart5jTKpTjtzBdo7faM+1d8GM8GJMTZgZi+02otAz6xNUn3qhTtHbvEv5OEdu6LKe1Ym08cd4Vpp5QrPzAcnOTEE5dWSRiJsXfK9f5xRFTB25A5PMBYmGlAEED3wYlFhIamB/zhwQfSMcVdWLwYwkcfgRziOiKlkgdjx6wFMcdsGApsyT68don7CBSlSzxkYjNFp0bAcDj1+kZtakRcwEkZI5/GFvC/KDicJJIJHfiJVUSkIQT7j+EBYebwnIxgHtGRZ3eWflxkfygJNO5TtIz7j3gK4HuBAZVLymntk/X8vmMdsnOLw5BPbH5RkTaazk5yYs0JrZ2q5/CFEPKPHA/LnMRdga5H+6CJJbG7J4/H0gBaw4nAGPoILvlc2Aq7Zx9YG1AAopP0/GB8JhG0fnz6wRNCOMjjPEbgqGueeMxQQyU5PEBJSMq49u0NjBn3XN6UI7q4OfQRzytWfdekZLymQD39x6xrErNwM7c8RpFxtsLV9RG5pjdWJpHJ794xlG2MlOF+mM+0c4MuUQcjI4jrIM0I2xtjfKSUbO2efr2gcJhPEEVKecxNc7DbyD6Qk52KkcxRIIyeeICRRuMBMM8e8a0KljI+oiXXgQDee/EJBQJA4zF9q6Vx/CHtNRTH1h7TRjiJqmgiIiggK+sBQpBgKFEBQM5MBPy8DEWQUU3iIKFAIgKFB75yIAUgCAoE+mcwBYyMe0BEj37RLNm0VIweBxDS7QeZ3t4HJhY1K059GV45P8AlGKqjLRChkc/yiQZrTWEe/sPeOkTa2Tkj+WO8SxVt1AUOBg9uYX7pGmzcgUq8xBPB59lD2jjZztuX7sllO9GcjnjtG4yvlAUcZxjtz2ii2WgnnnMBHyOeIlFtaDvx7cxgQWjAwecmCzlAoKwfQZ9R3gsukXmlLb74+hiVrawpWwEY5I9YlgtqcBWAf8AH0jIg6kKI4xn2gLTrexJJ9oC0Vc/3v4wGqyXEg1j6/1GO2TnE9hVx78RkZDDZQCDnI9Y3oXFDd3wYSAlG8ng4HpiGhTy/m9veJIKoY79u8LBPZtPI7Q9oICd2AOx9ougLQJGOMZhYKpTu44Iie0XCPlGOI0IobynngYgLhTn+7wICLiNoGSD/lAW0shDhWfw7RmQX2WsqPGAfzjQlt9AAB3gLjSNo9PqfaAi6zuBx7RryLRl8pGQOYlxTbJlmwhAAycxqTSWLyfvcxWVSnJgJpRATDefwgKobwe0XQr5WTCQTS3t9I1IJBOICsNBFDETQYxFCAQAjMBQpBjPIbBFFNkSCimcmLYI+ScxnQuJQEjEak0BT+GIgpshrgQU16+0TQp5fA+sNCpRkQ0KbQE8xLKKFGBAQKd35QESPTkQEVDAgsrHfZCl/dwTGdctSqfD5I7RrRtcSg54/P6QZq0tkgHHt3jN+zYGyQR2xE3xoWHWz2xnOfyiCAQEj/OAuKQB7cwFHE+hBzAW1I2+h+hgKOIP8Ylgt7Ekc+8YDHGccg54gLayXGweMdvrAWnJVLiD/tekF3piOy2xQGexwfpGbi2tFKm1HnAjNmhErCxjBzAWiBk/d/gYDVqeyFU9v2Of6jHo05TwvBjavHcRJFZKGkpT+PpFFAwEnn0gJeWSof4wFUp9swAfdx3xAUUnCQQDj6wESPLGc9zASA34wOe0BMJCYCpGeSAec4gJJQD3GPz7QFzy8pBx2HrAUcYBIIPP+MBAS52nPBgLkuj39e4ENJUx2BAgRcSk4PA5jUkS08vEaPcBkK98QNrgbA/KCbVwcwRJKcekBNDeOe8BMNlR9YsgklODFglGggEAgEAgEAgEAgEAgEAgEAgEAgEQAOIQMQooUAw0KeXDQtqawrsIzYIlOYgjsx2gIqb+kBDHp2gKpGICCknPHMNChP3sgRzrotBoKOTkD2gIqYAP59oJKmpIVjHHvntBUHcBR4xxwYC3yD34znHaAgUkZ7nMBbWnIHoRAW1qPmfTv+EYsFUIT+PMakBKAORnA/nEsGM41lWSODwYysqy7LjGefw94ljUYbiMAnaefeM1VAjjt/OINZpSQqntEcnn+ox6K5s