John Tyndall

Six Lectures on Light


Скачать книгу

The light, therefore, at starting is complex; to sift and select it as they do, natural bodies must be complex; while to take in the impressions thus generated, the human eye and brain, however we may simplify our conceptions of their action,[8] must be highly complex.

      Whence this triple complexity? If what are called material purposes were the only end to be served, a much simpler mechanism would be sufficient. But, instead of simplicity, we have prodigality of relation and adaptation—and this, apparently, for the sole purpose of enabling us to see things robed in the splendours of colour. Would it not seem that Nature harboured the intention of educating us for other enjoyments than those derivable from meat and drink? At all events, whatever Nature meant—and it would be mere presumption to dogmatize as to what she meant—we find ourselves here, as the upshot of her operations, endowed, not only with capacities to enjoy the materially useful, but endowed with others of indefinite scope and application, which deal alone with the beautiful and the true.

       Table of Contents

ORIGIN OF PHYSICAL THEORIESSCOPE OF THE IMAGINATIONNEWTON AND THE EMISSION THEORYVERIFICATION OF PHYSICAL THEORIESTHE LUMINIFEROUS ETHERWAVE THEORY OF LIGHTTHOMAS YOUNGFRESNEL AND ARAGOCONCEPTION OF WAVE-MOTIONINTERFERENCE OF WAVESCONSTITUTION OF SOUND-WAVESANALOGIES OF SOUND AND LIGHTILLUSTRATIONS OF WAVE-MOTIONINTERFERENCE OF SOUND-WAVESOPTICAL ILLUSTRATIONSPITCH AND COLOURLENGTHS OF THE WAVES OF LIGHT AND RATES OF VIBRATION OFTHE ETHER-PARTICLESINTERFERENCE OF LIGHTPHENOMENA WHICH FIRST SUGGESTED THE UNDULATORY THEORYBOYLE AND HOOKETHE COLOURS OF THIN PLATESTHE SOAP-BUBBLENEWTON'S RINGSTHEORY OF 'FITS'ITS EXPLANATION OF THE RINGSOVER-THROW OF THE THEORYDIFFRACTION OF LIGHTCOLOURS PRODUCED BY DIFFRACTIONCOLOURS OF MOTHER-OF-PEARL.

       Table of Contents

      We might vary and extend our experiments on Light indefinitely, and they certainly would prove us to possess a wonderful mastery over the phenomena. But the vesture of the agent only would thus be revealed, not the agent itself. The human mind, however, is so constituted that it can never rest satisfied with this outward view of natural things. Brightness and freshness take possession of the mind when it is crossed by the light of principles, showing the facts of Nature to be organically connected.

      Let us, then, inquire what this thing is that we have been generating, reflecting, refracting and analyzing.

      In doing this, we shall learn that the life of the experimental philosopher is twofold. He lives, in his vocation, a life of the senses, using his hands, eyes, and ears in his experiments: but such a question as that now before us carries him beyond the margin of the senses. He cannot consider, much less answer, the question, 'What is light?' without transporting himself to a world which underlies the sensible one, and out of which all optical phenomena spring. To realise this subsensible world the mind must possess a certain pictorial power. It must be able to form definite images of the things which that world contains; and to say that, if such or such a state of things exist in the subsensible world, then the phenomena of the sensible one must, of necessity, grow out of this state of things. Physical theories are thus formed, the truth of which is inferred from their power to explain the known and to predict the unknown.

      This conception of physical theory implies, as you perceive, the exercise of the imagination—a word which seems to render many respectable people, both in the ranks of science and out of them, uncomfortable. That men in the ranks of science should feel thus is, I think, a proof that they have suffered themselves to be misled by the popular definition of a great faculty, instead of observing its operation in their own minds. Without imagination we cannot take a step beyond the bourne of the mere animal world, perhaps not even to the edge of this one. But, in speaking thus of imagination, I do not mean a riotous power which deals capriciously with facts, but a well-ordered and disciplined power, whose sole function is to form such conceptions as the intellect imperatively demands. Imagination, thus exercised, never really severs itself from the world of fact. This is the storehouse from which its materials are derived; and the magic of its art consists, not in creating things anew, but in so changing the magnitude, position, grouping, and other relations of sensible things, as to render them fit for the requirements of the intellect in the subsensible world.[9]

      Descartes imagined space to be filled with something that transmitted light instantaneously. Firstly, because, in his experience, no measurable interval was known to exist between the appearance of a flash of light, however distant, and its effect upon consciousness; and secondly, because, as far as his experience went, no physical power is conveyed from place to place without a vehicle. But his imagination helped itself farther by illustrations drawn from the world of fact. 'When,' he says,' one walks in darkness with staff in hand, the moment the distant end of the staff strikes an obstacle the hand feels it. This explains what might otherwise be thought strange, that the light reaches us instantaneously from the sun. I wish thee to believe that light in the bodies that we call luminous is nothing more than a very brisk and violent motion, which, by means of the air and other transparent media, is conveyed to the eye, exactly as the shock through the walking-stick reaches the hand of a blind man. This is instantaneous, and would be so even if the intervening distance were greater than that between earth and heaven. It is therefore no more necessary that anything material should reach the eye from the luminous object, than that something should be sent from the ground to the hand of the blind man when he is conscious of the shock of his staff.' The celebrated Robert Hooke at first threw doubt upon this notion of Descartes, but he afterwards substantially espoused it. The belief in instantaneous transmission was destroyed by the discovery of Roemer referred to in our last lecture.

       Table of Contents

      The case of Newton still more forcibly illustrates the position, that in forming physical theories we draw for our materials upon the world of fact. Before he began to deal with light, he was intimately acquainted with the laws of elastic collision, which all of you have seen more or less perfectly illustrated on a billiard-table. As regards the collision of sensible elastic masses, Newton knew the angle of incidence to be equal to the angle of reflection, and he also knew that experiment, as shown in our last lecture (fig. 3), had established the same law with regard to light. He thus found in his previous knowledge the material for theoretic images. He had only to change the magnitude of conceptions already in his mind to arrive at the Emission Theory of Light. Newton supposed light to consist of elastic particles of inconceivable minuteness, shot out with inconceivable rapidity by luminous bodies. Optical reflection certainly occurred as if light consisted of such particles, and this was Newton's justification for introducing them.

      But this is not all. In another important particular, also, Newton's conceptions regarding the nature of light were influenced by his previous knowledge. He had been pondering over the phenomena of gravitation, and had made himself at home amid the operations of this universal power. Perhaps his mind at this time was too freshly and too deeply imbued with these notions to permit of his forming an unfettered judgment regarding the nature of light. Be that as it may, Newton saw in Refraction the result of an attractive force exerted on the light-particles. He carried his conception out with the most severe consistency. Dropping vertically downwards towards the earth's surface, the motion of a body is accelerated as it approaches the earth. Dropping downwards towards a horizontal surface—say from air on to glass or water—the velocity of the light-particles, when they came close to the surface, is, according to Newton, also accelerated. Approaching such a surface obliquely, he supposed the particles, when close to it, to be drawn down upon it, as a projectile is deflected by gravity to the surface of the earth. This deflection was, according to Newton, the refraction seen in our last lecture (fig. 4). Finally, it was supposed that differences of colour might be