John Tyndall

Sound


Скачать книгу

      The time required by light to travel over all terrestrial distances is practically zero; and in the experiments just referred to the moment of explosion was marked by the flash of a gun, the time occupied by the sound in passing from station to station being the interval observed between the appearance of the flash and the arrival of the sound. The velocity of sound in air once established, it is plain that we can apply it to the determination of distances. By observing, for example, the interval between the appearance of a flash of lightning and the arrival of the accompanying thunder-peal, we at once determine the distance of the place of discharge. It is only when the interval between the flash and peal is short that danger from lightning is to be apprehended.

       Table of Contents

      We now come to one of the most delicate points in the whole theory of sound. The velocity through air has been determined by direct experiment; but knowing the elasticity and density of the air, it is possible, without any experiment at all, to calculate the velocity with which a sound-wave is transmitted through it. Sir Isaac Newton made this calculation, and found the velocity at the freezing temperature to be 916 feet a second. This is about one-sixth less than actual observation had proved the velocity to be, and the most curious suppositions were made to account for the discrepancy. Newton himself threw out the conjecture that it was only in passing from particle to particle of the air that sound required time for its transmission; that it moved instantaneously through the particles themselves. He then supposed the line along which sound passes to be occupied by air-particles for one-sixth of its extent, and thus he sought to make good the missing velocity. The very art and ingenuity of this assumption were sufficient to throw doubt on it; other theories were therefore advanced, but the great French mathematician Laplace was the first Fig. 12. Fig. 12. to completely solve the enigma. I shall now endeavor to make you thoroughly acquainted with his solution.

      Into this strong cylinder of glass, T U, Fig. 12, which is accurately bored, and quite smooth within, fits an air-tight piston. By pushing the piston down, I condense the air beneath it, heat being at the same time developed. A scrap of amadou attached to the bottom of the piston is ignited by the heat generated by compression. If a bit of cotton wool dipped into bisulphide of carbon be attached to the piston, when the latter is forced down, a flash of light, due to the ignition of the bisulphide of carbon vapor, is observed within the tube. It is thus proved that when air is compressed heat is generated. By another experiment it may be shown that when air is rarefied cold is developed. This brass box contains a quantity of condensed air. I open the cock, and permit the air to discharge itself against a suitable thermometer; the sinking of the instrument immediately declares the chilling of the air.

      All that you have heard regarding the transmission of a sonorous pulse through air is, I trust, still fresh in your minds. As the pulse advances it squeezes the particles of air together, and two results follow from this compression. First, its elasticity is augmented through the mere augmentation of its density. Secondly, its elasticity is augmented by the heat of compression. It was the change of elasticity which resulted from a change of density that Newton took into account, and he entirely overlooked the augmentation of elasticity due to the second cause just mentioned. Over and above, then, the elasticity involved in Newton’s calculation, we have an additional elasticity due to changes of temperature produced by the sound-wave itself. When both are taken into account, the calculated and the observed velocities agree perfectly.

      But here, without due caution, we may fall into the gravest error. In fact, in dealing with Nature, the mind must be on the alert to seize all her conditions; otherwise we soon learn that our thoughts are not in accordance with her facts. It is to be particularly noted that the augmentation of velocity due to the changes of temperature produced by the sonorous wave itself is totally different from the augmentation arising from the heating of the general mass of the air. The average temperature of the air is unchanged by the waves of sound. We cannot have a condensed pulse without having a rarefied one associated with it. But in the rarefaction, the temperature of the air is as much lowered as it is raised in the condensation. Supposing, then, the atmosphere parcelled out into such condensations and rarefactions, with their respective temperatures, an extraneous sound passing through such an atmosphere would be as much retarded in the latter as accelerated in the former, and no variation of the average velocity could result from such a distribution of temperature.

Fig. 13.

      Fig. 13.

      Whence, then, does the augmentation pointed out by Laplace arise? I would ask your best attention while I endeavor to make this knotty point clear to you. If air be compressed it becomes smaller in volume; if the pressure be diminished, the volume expands. The force which resists compression, and which produces expansion, is the elastic force of the air. Thus an external pressure squeezes the air-particles together; their own elastic force holds them asunder, and the particles are in equilibrium when these two forces are in equilibrium. Hence it is that the external pressure is a measure of the elastic force. Let the middle row of dots, Fig. 13, represent a series of air-particles in a state of quiescence between the points a and x. Then, because of the elastic force exerted between the particles, if any one of them be moved from its position of rest, the motion will be transmitted through the entire series. Supposing the particle a to be driven by the prong of a tuning-fork, or some other vibrating body, toward x, so as to be caused finally to occupy the position a′ in the lowest row of particles: at the instant the excursion of a commences, its motion begins to be transmitted to b. In the next following moments b transmits the motion to c, c to d, d to e, and so on. So that by the time a has reached the position a′, the motion will have been propagated to some point o′ of the line of particles more or less distant from a′. The entire series of particles between a′ and o′ is then in a state of condensation. The distance a′ o′, over which the motion has travelled during the excursion of a to a′, will depend upon the elastic force exerted between the particles. Fix your attention on any two of the particles, say a and b. The elastic force between them may be figured as a spiral spring, and it is plain that the more flaccid this spring the more sluggish would be the communication of the motion from a to b; while the stiffer the spring the more prompt would be the communication of the motion. What is true of a and b is true for every other pair of particles between a and o. Now the spring between every pair of these particles is suddenly stiffened by the heat developed along the line of condensation, and hence the velocity of propagation is augmented by this heat. Reverting to our old experiment with the row of boys, it is as if, by the very act of pushing his neighbor, the muscular rigidity of each boy’s arm was increased, thus enabling him to deliver his push more promptly than he would have done without this increase of rigidity. The condensed portion of a sonorous wave is propagated in the manner here described, and it is plain that the velocity of propagation is augmented by the heat developed in the condensation.

      Let us now turn our thoughts for a moment to the propagation of the rarefaction. Supposing, as before, the middle row a x to represent the particles of air in equilibrium under the pressure of the atmosphere, and suppose the particle a to be suddenly drawn to the right, so as to occupy the position a″ in the highest line of dots: a″ is immediately followed by b″, b″ by c″, c″ by d″, d″ by e″; and thus the rarefaction is propagated backward toward x″, reaching a point o″ in the line of particles by the time a has completed its motion to the right. Now, why does b″ follow a″ when a″ is drawn away from it? Manifestly because the elastic force exerted between b″ and a″