Мартин Форд

Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей


Скачать книгу

ИИ. Является соавтором учебника по ИИ «Искусственный интеллект. Современный подход»[9], который в настоящее время используется более чем в 1300 колледжах и университетах в 118 странах. Получил степень бакалавра физики в Уодхэм-колледже Оксфордского университета и докторскую степень в области computer science в Стэнфорде. Занимался исследованиями на различные темы, связанные с ИИ, такие как машинное обучение, представление знаний и компьютерное зрение. Имеет многочисленные награды, в том числе Международной объединенной конференции по ИИ (IJCAI). Является членом Американской ассоциации содействия развитию науки, Ассоциации по продвижению ИИ (AAAI) и Ассоциации вычислительной техники (ACM).

      Мартин Форд: Вы написали учебник по ИИ, поэтому мне было бы интересно услышать, как вы определяете некоторые ключевые термины. Что входит в понятие ИИ? Какие проблемы информатики относятся к нему? Как ИИ связан с машинным обучением?

      Стюарт Рассел: Я дам вам, скажем так, стандартное определение, которое приведено в нашей книге и в настоящее время общепризнано: «сущность разумна настолько, насколько правильно она поступает». Это означает, что ее действия должны приводить к поставленным целям. Определение относится как к людям, так и к машинам. Если разложить идею правильного поведения на составляющие и исследовать, окажется, что система ИИ должна уметь постигать, видеть, распознавать речь и действовать.

      Еще требуется умение видеть суть вещей. Невозможно успешно функционировать в мире, о котором вам ничего не известно. Понять, каким образом мы осознаем различные вещи, помогает такое научное направление, как представление знаний. В его рамках изучаются способы внутреннего хранения данных, с последующей их обработкой алгоритмами формирования рассуждений, такими как алгоритмы автоматического логического вывода и вероятностного вывода.

      Машинное обучение всегда было частью науки об ИИ. По сути, это развитие корректного поведения на базе предшествующего опыта.

      М. Ф.: Еще дайте, пожалуйста, определения нейронным сетям и глубокому обучению.

      С. Р.: Одна из стандартных методик машинного обучения – это обучение с учителем. Системе ИИ дается набор примеров какого-то понятия, снабженных описаниями и метками. Представьте фотографию с подписью, которая указывает, что это изображение лодки, далматинца или чашки с вишнями. Цель обучения состоит в поиске параметра или гипотезы, которые позволят классифицировать изображения в целом. Так мы пытаемся научить ИИ предсказывать, как могут выглядеть другие изображения тех же объектов.

      Гипотезу или параметр можно представить в виде нейронной сети – схемы, состоящей из набора слоев. Входом в нее могут быть значения пикселов на фотографиях далматинцев. В процессе их распространения по схеме на каждом уровне вычисляются новые значения. На выходе из нейронной сети мы получаем распознавание объекта. И мы надеемся, что если подать на вход изображение далматинца, то после прохождения значений всех пикселов через все слои нейронной сети индикатор далматинца будет иметь высокое значение, а индикатор