Hence the imitation of different immune species by Papilio dardanus!
I regret that lack of space prevents my bringing forward more examples of mimicry and discussing them fully. But from the case of Papilio dardanus alone there is much to be learnt which is of the highest importance for our understanding of transformations. It shows us chiefly what I once called, somewhat strongly perhaps, THE OMNIPOTENCE OF NATURAL SELECTION in answer to an opponent who had spoken of its "inadequacy." We here see that one and the same species is capable of producing four or five different patterns of colouring and marking; thus the colouring and marking are not, as has often been supposed, a necessary outcome of the specific nature of the species, but a true adaptation, which cannot arise as a direct effect of climatic conditions, but solely through what I may call the sorting out of the variations produced by the species, according to their utility. That caterpillars may be either green or brown is already something more than could have been expected according to the old conception of species, but that one and the same butterfly should be now pale yellow, with black; now red with black and pure white; now deep black with large, pure white spots; and again black with a large ochreous-yellow spot, and many small white and yellow spots; that in one sub-species it may be tailed like the ancestral form, and in another tailless like its Danaid model—all this shows a far-reaching capacity for variation and adaptation that wide never have expected if we did not see the facts before us. How it is possible that the primary colour-variations should thus be intensified and combined remains a puzzle even now; we are reminded of the modern three-colour printing—perhaps similar combinations of the primary colours take place in this case; in any case the direction of these primary variations is determined by the artist whom we know as natural selection, for there is no other conceivable way in which the model could affect the butterfly that is becoming more and more like it. The same climate surrounds all four forms of female; they are subject to the same conditions of nutrition. Moreover, Papilio dardanus is by no means the only species of butterfly which exhibits different kinds of colour-pattern on its wings. Many species of the Asiatic genus Elymnias have on the upper surface a very good imitation of an immune Euploeine (Danainae), often with a steel-blue ground-colour, while the under surface is well concealed when the butterfly is at rest—thus there are two kinds of protective coloration each with a different meaning! The same thing may be observed in many non-mimetic butterflies, for instance in all our species of Vanessa, in which the under side shows a grey-brown or brownish-black protective coloration, but we do not yet know with certainty what may be the biological significance of the gaily coloured upper surface.
In general it may be said that mimetic butterflies are comparatively rare species, but there are exceptions, for instance Limenitis archippus in North America, of which the immune model (Danaida plexippus) also occurs in enormous numbers.
In another mimicry-category the imitators are often more numerous than the models, namely in the case of the imitation of DANGEROUS INSECTS by harmless species. Bees and wasps are dreaded for their sting, and they are copied by harmless flies of the genera Eristalis and Syrphus, and these mimics often occur in swarms about flowering plants without damage to themselves or to their models; they are feared and are therefore left unmolested.
In regard also to the FAITHFULNESS OF THE COPY the facts are quite in harmony with the theory, according to which the resemblance must have arisen and increased BY DEGREES. We can recognise this in many cases, for even now the mimetic species show very VARYING DEGREES OF RESEMBLANCE to their immune model. If we compare, for instance, the many different imitators of Danaida chrysippus we find that, with their brownish-yellow ground-colour, and the position and size, and more or less sharp limitation of their clear marginal spots, they have reached very different degrees of nearness to their model. Or compare the female of Elymnias undularis with its model Danaida genutia; there is a general resemblance, but the marking of the Danaida is very roughly imitated in Elymnias.
Another fact that bears out the theory of mimicry is, that even when the resemblance in colour-pattern is very great, the WING-VENATION, which is so constant, and so important in determining the systematic position of butterflies, is never affected by the variation. The pursuers of the butterfly have no time to trouble about entomological intricacies.
I must not pass over a discovery of Poulton's which is of great theoretical importance—that mimetic butterflies may reach the same effect by very different means. ("Journ. Linn. Soc. London (Zool.)", Vol. XXVI. 1898, pages 598–602.) Thus the glass-like transparency of the wing of a certain Ithomiine (Methona) and its Pierine mimic (Dismorphia orise) depends on a diminution in the size of the scales; in the Danaine genus Ituna it is due to the fewness of the scales, and in a third imitator, a moth (Castnia linus var. heliconoides) the glass-like appearance of the wing is due neither to diminution nor to absence of scales, but to their absolute colourlessness and transparency, and to the fact that they stand upright. In another moth mimic (Anthomyza) the arrangement of the transparent scales is normal. Thus it is not some unknown external influence that has brought about the transparency of the wing in these five forms, as has sometimes been supposed. Nor is it a hypothetical INTERNAL evolutionary tendency, for all three vary in a different manner. The cause of this agreement can only lie in selection, which preserves and intensifies in each species the favourable variations that present themselves. The great faithfulness of the copy is astonishing in these cases, for it is not THE WHOLE wing which is transparent; certain markings are black in colour, and these contrast sharply with the glass-like ground. It is obvious that the pursuers of these butterflies must be very sharp-sighted, for otherwise the agreement between the species could never have been pushed so far. The less the enemies see and observe, the more defective must the imitation be, and if they had been blind, no visible resemblance between the species which required protection could ever have arisen.
A seemingly irreconcilable contradiction to the mimicry theory is presented in the following cases, which were known to Bates, who, however, never succeeded in bringing them into line with the principle of mimicry.
In South America there are, as we have already said, many mimics of the immune Ithomiinae (or as Bates called them Heliconidae). Among these there occur not merely species which are edible, and thus require the protection of a disguise, but others which are rejected on account of their unpalatableness. How could the Ithomiine dress have developed in their case, and of what use is it, since the species would in any case be immune? In Eastern Brazil, for instance, there are four butterflies, which bear a most confusing resemblance to one another in colour, marking, and form of wing, and all four are unpalatable to birds. They belong to four different genera and three sub-families, and we have to inquire: Whence came this resemblance and what end does it serve? For a long time no satisfactory answer could be found, but Fritz Muller (In "Kosmos", 1879, page 100.), seventeen years after Bates, offered a solution to the riddle, when he pointed out that young birds could not have an instinctive knowledge of the unpalatableness of the Ithomiines, but must learn by experience which species were edible and which inedible. Thus each young bird must have tasted at least one individual of each inedible species and discovered its unpalatability, before it learnt to avoid, and thus to spare the species. But if the four species resemble each other very closely the bird will regard them all as of the same kind, and avoid them all. Thus there developed a process of selection which resulted in the survival of the Ithomiine-like individuals, and in so great an increase of resemblance between the four species, that they are difficult to distinguish one from another even in a collection. The advantage for the four species, living side by side as they do e.g. in Bahia, lies in the fact that only one individual from the MIMICRY-RING ("inedible association") need be tasted by a young bird, instead of at least four individuals, as would otherwise be the case. As the number of young birds is great, this makes a considerable difference in the ratio of elimination.
These interesting mimicry-rings (trusts), which have much significance for the theory, have been the subject of numerous and careful investigations, and at least their essential features are now fully established. Muller took for granted, without making any investigations, that young birds only learn by experience to distinguish between different kinds of victims. But Lloyd Morgan's ("Habit and Instinct", London, 1896.) experiments with young birds proved that this is really the case, and at the same time furnished an additional argument against the LAMARCKIAN PRINCIPLE.
In addition to the mimicry-rings first observed in South America, others have been