no liquid carbon shall be found on the face of the earth: but we do not suppose that the form of the diamond has been gradually achieved by a process of Selection. So again, as the course of descent branches in the successive generations, Selection determines along which branch Evolution shall proceed, but it does not decide what novelties that branch shall bring forth. "La Nature contient le fonds de toutes ces varietes, mais le hazard ou l'art les mettent en oeuvre," as Maupertuis most truly said.
Not till knowledge of the genetic properties of organisms has attained to far greater completeness can evolutionary speculations have more than a suggestive value. By genetic experiment, cytology and physiological chemistry aiding, we may hope to acquire such knowledge. In 1872 Nathusius wrote ("Vortrage uber Viehzucht und Rassenerkenntniss", page 120, Berlin, 1872.): "Das Gesetz der Vererbung ist noch nicht erkannt; der Apfel ist noch nicht vom Baum der Erkenntniss gefallen, welcher, der Sage nach, Newton auf den rechten Weg zur Ergrundung der Gravitationsgesetze fuhrte." We cannot pretend that the words are not still true, but in Mendelian analysis the seeds of that apple-tree at last are sown.
If we were asked what discovery would do most to forward our inquiry, what one bit of knowledge would more than any other illuminate the problem, I think we may give the answer without hesitation. The greatest advance that we can foresee will be made when it is found possible to connect the geometrical phenomena of development with the chemical. The geometrical symmetry of living things is the key to a knowledge of their regularity, and the forces which cause it. In the symmetry of the dividing cell the basis of that resemblance we call Heredity is contained. To imitate the morphological phenomena of life we have to devise a system which can divide. It must be able to divide, and to segment as—grossly—a vibrating plate or rod does, or as an icicle can do as it becomes ribbed in a continuous stream of water; but with this distinction, that the distribution of chemical differences and properties must simultaneously be decided and disposed in orderly relation to the pattern of the segmentation. Even if a model which would do this could be constructed it might prove to be a useful beginning.
This may be looking too far ahead. If we had to choose some one piece of more proximate knowledge which we would more especially like to acquire, I suppose we should ask for the secret of interracial sterility. Nothing has yet been discovered to remove the grave difficulty, by which Huxley in particular was so much oppressed, that among the many varieties produced under domestication—which we all regard as analogous to the species seen in nature—no clear case of interracial sterility has been demonstrated. The phenomenon is probably the only one to which the domesticated products seem to afford no parallel. No solution of the difficulty can be offered which has positive value, but it is perhaps worth considering the facts in the light of modern ideas. It should be observed that we are not discussing incompatibility of two species to produce offspring (a totally distinct phenomenon), but the sterility of the offspring which many of them do produce.
When two species, both perfectly fertile severally, produce on crossing a sterile progeny, there is a presumption that the sterility is due to the development in the hybrid of some substance which can only be formed by the meeting of two complementary factors. That some such account is correct in essence may be inferred from the well-known observation that if the hybrid is not totally sterile but only partially so, and thus is able to form some good germ-cells which develop into new individuals, the sterility of these daughter-individuals is sensibly reduced or may be entirely absent. The fertility once re-established, the sterility does not return in the later progeny, a fact strongly suggestive of segregation. Now if the sterility of the cross-bred be really the consequence of the meeting of two complementary factors, we see that the phenomenon could only be produced among the divergent offspring of one species by the acquisition of at least TWO new factors; for if the acquisition of a single factor caused sterility the line would then end. Moreover each factor must be separately acquired by distinct individuals, for if both were present together, the possessors would by hypothesis be sterile. And in order to imitate the case of species each of these factors must be acquired by distinct breeds. The factors need not, and probably would not, produce any other perceptible effects; they might, like the colour-factors present in white flowers, make no difference in the form or other characters. Not till the cross was actually made between the two complementary individuals would either factor come into play, and the effects even then might be unobserved until an attempt was made to breed from the cross-bred.
Next, if the factors responsible for sterility were acquired, they would in all probability be peculiar to certain individuals and would not readily be distributed to the whole breed. Any member of the breed also into which BOTH the factors were introduced would drop out of the pedigree by virtue of its sterility. Hence the evidence that the various domesticated breeds say of dogs or fowls can when mated together produce fertile offspring, is beside the mark. The real question is, Do they ever produce sterile offspring? I think the evidence is clearly that sometimes they do, oftener perhaps than is commonly supposed. These suggestions are quite amenable to experimental tests. The most obvious way to begin is to get a pair of parents which are known to have had any sterile offspring, and to find the proportions in which these steriles were produced. If, as I anticipate, these proportions are found to be definite, the rest is simple.
In passing, certain other considerations may be referred to. First, that there are observations favouring the view that the production of totally sterile cross-breds is seldom a universal property of two species, and that it may be a matter of individuals, which is just what on the view here proposed would be expected. Moreover, as we all know now, though incompatibility may be dependent to some extent on the degree to which the species are dissimilar, no such principle can be demonstrated to determine sterility or fertility in general. For example, though all our Finches can breed together, the hybrids are all sterile. Of Ducks some species can breed together without producing the slightest sterility; others have totally sterile offspring, and so on. The hybrids between several genera of Orchids are perfectly fertile on the female side, and some on the male side also, but the hybrids produced between the Turnip (Brassica napus) and the Swede (Brassica campestris), which, according to our estimates of affinity should be nearly allied forms, are totally sterile. (See Sutton, A.W., "Journ. Linn. Soc." XXXVIII. page 341, 1908.) Lastly, it may be recalled that in sterility we are almost certainly considering a meristic phenomenon. FAILURE TO DIVIDE is, we may feel fairly sure, the immediate "cause" of the sterility. Now, though we know very little about the heredity of meristic differences, all that we do know points to the conclusion that the less-divided is dominant to the more-divided, and we are thus justified in supposing that there are factors which can arrest or prevent cell-division. My conjecture therefore is that in the case of sterility of cross-breds we see the effect produced by a complementary pair of such factors. This and many similar problems are now open to our analysis.
The question is sometimes asked, Do the new lights on Variation and Heredity make the process of Evolution easier to understand? On the whole the answer may be given that they do. There is some appearance of loss of simplicity, but the gain is real. As was said above, the time is not ripe for the discussion of the origin of species. With faith in Evolution unshaken—if indeed the word faith can be used in application to that which is certain—we look on the manner and causation of adapted differentiation as still wholly mysterious. As Samuel Butler so truly said: "To me it seems that the 'Origin of Variation,' whatever it is, is the only true 'Origin of Species'" ("Life and Habit", London, page 263, 1878.), and of that Origin not one of us knows anything. But given Variation—and it is given: assuming further that the variations are not guided into paths of adaptation—and both to the Darwinian and to the modern school this hypothesis appears to be sound if unproven—an evolution of species proceeding by definite steps is more, rather than less, easy to imagine than an evolution proceeding by the accumulation of indefinite and insensible steps. Those who have lost themselves in contemplating the miracles of Adaptation (whether real or spurious) have not unnaturally fixed their hopes rather on the indefinite than on the definite changes. The reasons are obvious. By suggesting that the steps through which an adaptative mechanism arose were indefinite and insensible, all further trouble is spared. While it could be said that species arise by an insensible and imperceptible process of variation, there was clearly no use in tiring ourselves by trying to perceive that process. This labour-saving counsel found great favour. All that had to be done to develop evolution-theory was to discover the good in everything, a task which,