Joseph McCabe

The Story of Evolution


Скачать книгу

the visual telescope, are comparatively recent, and the field to be explored is enormous. The mist is lifting from the cosmic landscape, but there is still enough to blur our vision. Very puzzling questions remain unanswered. What is the origin of the great gaseous nebulae? What is the origin of the triple or quadruple star? What is the meaning of stars whose light ebbs and flows in periods of from a few to several hundred days? We may even point to the fact that some, at least, of the spiral nebulae are far too vast to be the outcome of the impact or approach of two stars.

      We may be content to think that we have found out some truths, by no means the whole truth, about the evolution of worlds. Throughout this immeasurable ocean of ether the particles of matter are driven together and form bodies. These bodies swarm throughout space, like fish in the sea; travelling singly (the "shooting star"), or in great close shoals (the nucleus of a comet), or lying scattered in vast clouds. But the inexorable pressure urges them still, until billions of tons of material are gathered together. Then, either from the sheer heat of the compression, or from the formation of large and unstable atomic systems (radium, etc.), or both, the great mass becomes a cauldron of fire, mantled in its own vapours, and the story of a star is run. It dies out in one part of space to begin afresh in another. We see nothing in the nature of a beginning or an end for the totality of worlds, the universe. The life of all living things on the earth, from the formation of the primitive microbes to the last struggles of the superman, is a small episode of that stupendous drama, a fraction of a single scene. But our ampler knowledge of it, and our personal interest in it, magnify that episode, and we turn from the cosmic picture to study the formation of the earth and the rise of its living population.

       Table of Contents

      The story of the evolution of our solar system is, it will now be seen, a local instance of the great cosmic process we have studied in the last chapter. We may take one of the small spiral nebulae that abound in the heavens as an illustration of the first stage. If a still earlier stage is demanded, we may suppose that some previous sun collided with, or approached too closely, another mighty body, and belched out a large part of its contents in mighty volcanic outpours. Mathematical reasoning can show that this erupted material would gather into a spiral nebula; but, as mathematical calculations cannot be given here, and are less safe than astronomical facts, we will be content to see the early shape of our solar system in a relatively small spiral nebula, its outermost arm stretching far beyond the present orbit of Neptune, and its great nucleus being our present sun in more diffused form.

      We need not now attempt to follow the shrinking of the central part of the nebula until it becomes a rounded fiery sun. That has been done in tracing the evolution of a star. Here we have to learn how the planets were formed from the spiral arms of the nebula. The principle of their formation is already clear. The same force of gravitation, or the same pressure of the surrounding ether, which compresses the central mass into a fiery globe, will act upon the loose material of the arms and compress it into smaller globes. But there is an interesting and acute difference of opinion amongst modern experts as to whether these smaller globes, the early planets, would become white-hot bodies.

      The general opinion, especially among astronomers, is that the compression of the nebulous material of the arms into globes would generate enormous heat, as in the case of the sun. On that view the various planets would begin their careers as small suns, and would pass through those stages of cooling and shrinking which we have traced in the story of the stars. A glance at the photograph of one of the spiral nebulae strongly confirms this. Great luminous knots, or nuclei, are seen at intervals in the arms. Smaller suns seem to be forming in them, each gathering into its body the neighbouring material of the arm, and rising in temperature as the mass is compressed into a globe. The spectroscope shows that these knots are condensing masses of white-hot liquid or solid matter. It therefore seems plain that each planet will first become a liquid globe of fire, coursing round the central sun, and will gradually, as its heat is dissipated and the supply begins to fail, form a solid crust.

      This familiar view is challenged by the new "planetesimal hypothesis," which has been adopted by many distinguished geologists (Chamberlin, Gregory, Coleman, etc.). In their view the particles in the arms of the nebula are all moving in the same direction round the sun. They therefore quietly overtake the nucleus to which they are attracted, instead of violently colliding with each other, and much less heat is generated at the surface. In that case the planets would not pass through a white-hot, or even red-hot, stage at all. They are formed by a slow ingathering of the scattered particles, which are called "planetesimals" round the larger or denser masses of stuff which were discharged by the exploding sun. Possibly these masses were prevented from falling back into the sun by the attraction of the colliding body, or the body which caused the eruption. They would revolve round the parent body, and the shoals of smaller particles would gather about them by gravitation. If there were any large region in the arm of the nebula which had no single massive nucleus, the cosmic dust would gather about a number of smaller centres. Thus might be explained the hundreds of planetoids, or minor planets, which we find between Mars and Jupiter. If these smaller bodies came within the sphere of influence of one of the larger planets, yet were travelling quickly enough to resist its attraction, they would be compelled to revolve round it, and we could thus explain the ten satellites of Saturn and the eight of Jupiter. Our moon, we shall see, had a different origin.

      We shall find this new hypothesis crossing the familiar lines at many points in the next few chapters. We will consider those further consequences as they arise, but may say at once that, while the new theory has greatly helped us in tracing the formation of the planetary system, astronomers are strongly opposed to its claim that the planets did not pass through an incandescent stage. The actual features of our spiral nebulae seem clearly to exhibit that stage. The shape of the planets—globular bodies, flattened at the poles—strongly suggests that they were once liquid. The condition in which we find Saturn and Jupiter very forcibly confirms this suggestion; the latest study of those planets supports the current opinion that they are still red-hot, and even seems to detect the glow of their surfaces in their mantles of cloud. These points will be considered more fully presently. For the moment it is enough to note that, as far as the early stages of planetary development are concerned, the generally accepted theory rests on a mass of positive evidence, while the new hypothesis is purely theoretical. We therefore follow the prevailing view with some confidence.

      Those of the spiral nebulae which face the earth squarely afford an excellent suggestion of the way in which planets are probably formed. In some of these nebulae the arms consist of almost continuous streams of faintly luminous matter; in others the matter is gathering about distinct centres; in others again the nebulous matter is, for the most part, collected in large glowing spheres. They seem to be successive stages, and to reveal to us the origin of our planets. The position of each planet in our solar system would be determined by the chance position of the denser stuff shot out by the erupting sun. I have seen Vesuvius hurl up into the sky, amongst its blasts of gas and steam, white-hot masses of rock weighing fifty tons. In the far fiercer outburst of the erupting sun there would be at least thinner and denser masses, and they must have been hurled so far into space that their speed in travelling round the central body, perhaps seconded by the attraction of the second star, overcame the gravitational pull back to the centre. Recollect the force which, in the new star in Perseus, drove masses of hydrogen for millions of miles at a speed of a thousand miles a second.

      These denser nuclei or masses would, when the eruption was over, begin to attract to themselves all the lighter nebulous material within their sphere of gravitational influence. Naturally, there would at first be a vast confusion of small and large centres of condensation in the arms of the nebula, moving in various directions, but a kind of natural selection—and, in this case, survival of the biggest—would ensue. The conflicting movements would be adjusted by collisions and gravitation, the smaller bodies would be absorbed in the larger or enslaved as their satellites, and the last state would be a family of smaller suns circling at vast distances round the parent body. The planets, moreover, would be caused to rotate on their axes, besides revolving