George E. Waring

Draining for Profit, and Draining for Health


Скачать книгу

provision for collecting, at its base, the water flowing over its surface, and taking it at once into the drains, so that it may not make the land near it unduly wet. To effect this, a ditch should be dug along the base of the rock, and quite down to it, considerably deeper than the level of the proposed drainage; and this should be filled with small stones to that level, with a line of tile laid on top of the stones, a uniform bottom for the tile to rest upon being formed of cheap strips of board. The tile and stone should then be covered with inverted sods, with wood shavings, or with other suitable material, which will prevent the entrance of earth, (from the covering of the drain,) to choke them. The water, following down the surface of the rock, will rise through the stone work and, entering the tile, will flow off. This method may be used for springy hill sides.

      6. The points previously considered relate only to the[pg 061] collection of unusual quantities of water, (from springs and from rock surfaces,) and to the removal from the land of what is thus collected, and of that which flows from the minor or lateral drains.

      The lateral drains themselves constitute the real drainage of the field, for, although main lines take water from the land on each side, their action in this regard is not usually considered, in determining either their depth or their location, and they play an exceedingly small part in the more simple form of drainage—that in which a large tract of land, of perfectly uniform slope, is drained by parallel lines of equal length, all discharging into a single main, running across the foot of the field. The land would be equally well drained, if the parallel lines were continued to an open ditch beyond its boundary—the main tile drain is only adopted for greater convenience and security. It will simplify the question if, in treating the theory of lateral drains, it be assumed that our field is of this uniform inclination, and admits of the use of long lines of parallel drains. In fact, it is best in practice to approximate as nearly as possible to this arrangement, because deviations from it, though always necessary in broken land, are always more expensive, and present more complicated engineering problems. If all the land to be drained had a uniform fall, in a single direction, there would be but little need of engineering skill, beyond that which is required to establish the depth, fall, and distance apart, at which the drains should be laid. It is chiefly when the land pitches in different directions, and with varying inclination, that only a person skilled in the arrangement of drains, or one who will give much consideration to the subject, can effect the greatest economy by avoiding unnecessary complication, and secure the greatest efficiency by adjusting the drains to the requirements of the land.

      Assuming the land to have an unbroken inclination, so as to require only parallel drains, it becomes important to[pg 062] know how these parallel drains, (corresponding to the lateral drains of an irregular system,) should be made.

      The history of land draining is a history of the gradual progress of an improvement, from the accomplishment of a single purpose, to the accomplishment of several purposes, and most of the instruction which modern agricultural writers have given concerning it, has shown too great dependence upon the teachings of their predecessors, who considered well the single object which they sought to attain, but who had no conception that draining was to be so generally valuable as it has become. The effort, (probably an unconscious one,) to make the theories of modern thorough-draining conform to those advanced by the early practitioners, seems to have diverted attention from some more recently developed principles, which are of much importance. For example, about a hundred years ago, Joseph Elkington, of Warwickshire, discovered that, where land is made too wet by under-ground springs, a skillful tapping of these—drawing off their water through suitable conduits—would greatly relieve the land, and for many years the Elkington System of drainage, being a great improvement on every thing theretofore practiced, naturally occupied the attention of the agricultural world, and the Board of Agriculture appointed a Mr. Johnstone to study the process, and write a treatise on the subject.

      Catch-water drains, made so as to intercept a flow of surface water, have been in use from immemorial time, and are described by the earliest writers. Before the advent of the Draining Tile, covered drains were furnished with stones, boards, brush, weeds, and various other rubbish, and their good effect, very properly, claimed the attention of all improvers of wet land. When the tile first made its appearance in general practice, it was of what is called the "horse-shoe" form, and—imperfect though it was—it was better than anything that had preceded it, and was received with high approval, wherever it became known.[pg 063] The general use of all these materials for making drains was confined to a system of partial drainage, until the publication of a pamphlet, in 1833, by Mr. Smith, of Deanston, who advocated the drainage of the whole field, without reference to springs. From this plan, but with important modifications in matters of detail, the modern system of tile draining has grown. Many able men have aided its progress, and have helped to disseminate a knowledge of its processes and its effects, yet there are few books on draining, even the most modern ones, which do not devote much attention to Elkington's discovery; to the various sorts of stone and brush drains; and to the manufacture and use of horse-shoe tile;—not treating them as matters of antiquarian interest, but repeating the instructions for their application, and allowing the reasoning on which their early use was based, to influence, often to a damaging extent, their general consideration of the modern practice of tile draining.

      These processes are all of occasional use, even at this day, but they are based on no fixed rules, and are so much a matter of traditional knowledge, with all farmers, that instruction concerning them is not needed. The kind of draining which is now under consideration, has for its object the complete removal of all of the surplus water that reaches the soil, from whatever source, and the assimilation of all wet soils to a somewhat uniform condition, as to the ease with which water passes through them.

      There are instances, as has been shown, where a large spring, overflowing a considerable area, or supplying the water of an annoying brook, ought to be directly connected with the under-ground drainage, and its flow neatly carried away; and, in other cases, the surface flow over large masses of rock should be given easy entrance into the tile; but, in all ordinary lands, whether swamps, springy hill sides, heavy clays, or light soils lying on retentive subsoil, all ground, in fact, which needs under-draining[pg 064] at all, should be laid dry above the level to which it is deemed best to place the drains;—not only secured against the wetting of springs and soakage water, but rapidly relieved of the water of heavy rains. The water table, in short, should be lowered to the proper depth, and, by permanent outlets at that depth, be prevented from ever rising, for any considerable time, to a higher level. This being accomplished, it is of no consequence to know whence the water comes, and Elkington's system need have no place in our calculations. As round pipes, with collars, are far superior to the "horse-shoe" tiles, and are equally easy to obtain, it is not necessary to consider the manner in which these latter should be used—only to say that they ought not to be used at all.

      The water which falls upon the surface is at once absorbed, settles through the ground, until it reaches a point where the soil is completely saturated, and raises the general water level. When this level reaches the floor of the drains, the water enters at the joints and is carried off. That which passes down through the land lying between the drains, bears down upon that which has already accumulated in the soil, and forces it to seek an outlet by rising into the drains.7 For example, if a barrel, standing on end, be filled with earth which is saturated with water, and its bung be removed, the water of saturation, (that is, all which is not held by attraction in the particles of earth,) will be removed from so much of the mass as lies above the bottom of the bung-hole. If a bucket of water be now poured upon the top, it will not all run diagonally toward the opening; it will trickle down to the level of the water remaining in the barrel, and this level will rise and water will run off at the bottom of the orifice. In this manner, the water, even below the drainage level,[pg 065] is changed with each addition at the surface. In a barrel filled with coarse pebbles, the water of saturation would maintain a nearly level surface; if the material were more compact and retentive, a true level would be attained only after a considerable time. Toward the end of the flow, the water would stand highest at the points furthest distant from the outlet. So, in the land, after a drenching rain, the water is first removed to the full depth, near the line of the drain, and that midway between two drains settles much more slowly, meeting more resistance from below, and, for a long time, will remain some inches higher than the floor