Группа авторов

Biological Mechanisms of Tooth Movement


Скачать книгу

ends subjected directly to the pressure show broad, uncalcified zones (cG), which are surrounded by densely arranged rows of osteoblasts (ob). At the ends of the spicules directed from the tooth, occasionally numerous osteoclasts are seen. a, dentine; b, cementum; g, PDL; ok, osteoclasts; nearer to the apex of the root old unchanged bone (k)."/>

      (Source: Oppenheim, 1911. Reproduced with permission of Oxford University Press.)

      Oppenheim substantiated his findings by drawing support from Wolff ’s law, and his investigations could not find any injury in the PDL. He concluded that, in OTM, all mechanical forces applied to a tooth are absorbed by the PDL, and at times he could observe a hypertrophy to withstand the increased demand placed upon it. Unlike Sandstedt, Oppenheim reported on seeing no hyalinization or undermining resorption in his experimental material. He further wrote that “The vitality of the periosteum suffers no injury during the application of “physiological forces,” even on compression of the PDL to a third of its original thickness. It may be exposed to slight hemorrhages, to occasional constriction in the lumen, or disappearance of the vessels, but the staining ability of the cell nuclei is retained, and no disintegration can be demonstrated by any photographs.

      The pressure–tension hypothesis

      Schwarz (1932), working along the same lines as both Sandstedt and Oppenheim, formulated the “pressure–tension hypothesis” of OTM. It is postulated that in sites of compression in the PDL, it displays disorganization and diminution of fiber production. Here, cell replication decreases, seemingly as a result of vascular constriction. In contrast, in PDL tension sites, stimulation produced by stretching of fiber bundles results in an increase in cell replication. Schwarz detailed the concept further by correlating the tissue response to the magnitude of the applied force with the capillary blood pressure and categorized it as four degrees of biologic effect:

       First degree of biologic effect. The force is of such a short duration or so slight that no reaction whatsoever is caused in the periodontium.

       Second degree of biologic effect (Figure 2.8). The force is gentle, speaking biologically; it remains below the pressure in the blood capillaries, i.e., less than 20–26 g for 1 cm2 of root surface, but it is nevertheless sufficient to cause resorption in the alveolar bone at the regions of pressure in the PDL. After the force ceases there will be anatomic and functional resolution of integrity of the PDL and alveolar bone without resorption of dental roots.Figure 2.7 Elongation from the original article by Oppenheim (2011). Apex of the root (a). The spongy bone spicules at the root apex appear as long, thin, buttresses, stretching from the depth toward the root apex (k1), their tops and sides being enclosed by narrow uncalcified zones and strong layers of osteoblasts (ob). ok, osteoclasts.(Source: Oppenheim, 1911. Reproduced with permission of Oxford University Press.)

       Third degree of biologic effect (Figure 2.9). The force is fairly strong; sustaining increased pressure in the blood capillaries of the compressed PDL. At these areas, suffocation of the strangled PDL develops, followed by resorption of the necrotic tissue, including the dental root surfaces. This resorption takes an impetuous course and attacks also those parts of the surface of the root, the vitality of which may be injured by the pressure. After the force ceases, there will be anatomic and functional resolution of integrity of the PDL and alveolar bone, with resorption of roots frequently progressing into the dentin.

       Fourth degree of biologic effect (Figure 2.10). The force is strong, squeezing the strangled PDL, and the tooth touches the bone after the soft tissues are crushed. Alveolar bone resorption occurs in the periphery of the hyalinized PDL zones, as well as in bone marrow cavities near the compressed PDL. However, this situation is associated with a high risk of severe alveolar bone and root resorption, and damage to tissues of the dental pulp. In some cases, ankylosis of the tooth with the alveolar bone may occur.

      (Source: Schwarz, 1932. Reproduced with permission of Elsevier.)

Photos depict the third degree of biologic effect as portrayed in Schwarz article (1932). (a) Shows MZ, marginal side of pull; MD, marginal side of pressure; 0, tilt axis; AZ, apical side of pull; AD, apical side of pressure. (b) Marginal side of pressure, greatly enlarged: Z, tooth (dentine); C, cementum; H, resorption cavity reaching far into the dentine; P, periodontium; R, line of resorption on the alveolar wall, densely covered by osteoblasts; early stages of regeneration; A, compressed area of the periodontium, no nuclei of cells; U, signs of undermining resorption. (c) Sketch of the spring. The point of application on the tooth is shown at X.