Группа авторов

3D Printing for Energy Applications


Скачать книгу

additive manufacturing of steels using laser powder bed fusion. Proceedings of the 19th International Conference and Exhibition European Society for Precision Engineering and Nanotechnology, Conference, EUSPEN 2019, Bilbao.

      37 37 Chen, J., Yang, Y., Song, C., Zhang, M., Wu, S., & Wang, D. (2019). Interfacial microstructure and mechanical properties of 316L /CuSn10 multi‐material bimetallic structure fabricated by selective laser melting. Materials Science and Engineering A, 752, 75–85. doi:10.1016/j.msea.2019.02.097

      38 38 Hinojos, A., Mireles, J., Reichardt, A., Frigola, P., Hosemann, P., Murr, L. E., & Wicker, R. B. (2016). Joining of Inconel 718 and 316 Stainless Steel using electron beam melting additive manufacturing technology. Materials and Design, 94, 17–27. doi:10.1016/j.matdes.2016.01.041

      39 39 AlMangour, B., Grzesiak, D., & Yang, J. M. (2017). In‐situ formation of novel TiC‐particle‐reinforced 316L stainless steel bulk‐form composites by selective laser melting. Journal of Alloys and Compounds, 706, 409–418. doi:10.1016/j.jallcom.2017.01.149

      40 40 Han, C., Li, Y., Wang, Q., Cai, D., Wei, Q., Yang, L., . . . Shi, Y. (2018). Titanium/hydroxyapatite (Ti/HA) gradient materials with quasi‐continuous ratios fabricated by SLM: Material interface and fracture toughness. Materials and Design, 141, 256–266. doi:10.1016/j.matdes.2017.12.037

      41 41 Kun, C., Beibei, H. H., Wenheng, W., & Cailin, Z. (2017). The formation mechanism of TiC reinforcement and improved tensile strength in additive manufactured Ti matrix nanocomposite. Vacuum, 143, 23–27. doi:10.1016/j.vacuum.2017.05.029

      42 42 Xia, M., Liu, A., Hou, Z., Li, N., Chen, Z., & Ding, H. (2017). Microstructure growth behavior and its evolution mechanism during laser additive manufacture of in‐situ reinforced (TiB+TiC)/Ti composite. Journal of Alloys and Compounds, 728, 436–444. doi:10.1016/j.jallcom.2017.09.033

      43 43 Niendorf, T., Leuders, S., Riemer, A., Brenne, F., Tröster, T., Richard, H. A., & Schwarze, D. (2014). Functionally graded alloys obtained by additive manufacturing. Advanced Engineering Materials, 16(7), 857–861. doi:10.1002/adem.201300579

      44 44 Koptyug, A., Popov, V. V., Botero Vega, C. A., Jiménez‐Piqué, E., Katz‐Demyanetz, A., Rännar, L. E., & Bäckström, M. (2020). Compositionally‐tailored steel‐based materials manufactured by electron beam melting using blended pre‐alloyed powders. Materials Science and Engineering A, 771(July 2019), 138587‐1–138587‐11. doi:10.1016/j.msea.2019.138587

      45 45 Biondani, F. G., Bissacco, G., Mohanty, S., Tang, P. T., & Hansen, H. N. (2020). Multi‐metal additive manufacturing process chain for optical quality mold generation. Journal of Materials Processing Technology, 277, 116451.

      46 46 Anstaett, C., Seidel, C., & Reinhart, G. (2017). Fabrication of 3D multi‐material parts using laser‐based powder bed fusion. Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium.

      47 47 Aerosint. (n.d.). Selective powder deposition for AM. Retrieved from https://aerosint.com/

      48 48 Demir, A. G., & Previtali, B. (2017). Multi‐material selective laser melting of Fe/Al‐12Si components. Manufacturing Letters, 11, 8–11.

      49 49 Wei, C., Li, L., Zhang, X., & Chueh, Y.‐H. (2018). 3D printing of multiple metallic materials via modified selective laser melting. CIRP Annals, 67(1), 245–248.

      50 50 Bodner, S. C., van de Vorst, L. T. G., Zalesak, J., Todt, J., Keckes, J. F., Maier‐Kiener, V., . . . Keckes, J. (2020). Inconel‐steel multilayers by liquid dispersed metal powder bed fusion: Microstructure, residual stress and property gradients. Additive Manufacturing, 32, 101027‐1–101027‐11. doi:10.1016/j.addma.2019.101027

      51 51 Wang, J., Pan, Z., Ma, Y., Lu, Y., Shen, C., Cuiuri, D., & Li, H. (2018). Characterization of wire arc additively manufactured titanium aluminide functionally graded material: Microstructure, mechanical properties and oxidation behaviour. Materials Science and Engineering A, 734, 110–119. doi:10.1016/j.msea.2018.07.097

      52 52 FORCE Technology. (n.d.). Large‐scale 3D printing facility. Retrieved from https://forcetechnology.com/en/all‐industry‐facilities/large‐scale‐3d‐printing‐facility

      53 53 Stavropoulos, P., Foteinopoulos, P., Papacharalampopoulos, A., & Bikas, H. (2018). Addressing the challenges for the industrial application of additive manufacturing: Towards a hybrid solution. International Journal of Lightweight Materials and Manufacture, 1(3), 157–168. doi:10.1016/j.ijlmm.2018.07.002

      54 54 Lundin, C. D. (1982). Dissimilar metal welds: Transition joints literature review. Welding Journal (Miami, Fla), 61(2), 58‐s–63‐s.

      55 55 Chen, N., Khan, H. A., Wan, Z., Lippert, J., Sun, H., Shang, S.‐L., . . . Li, J. (2020). Microstructural characteristics and crack formation in additively manufactured bimetal material of 316L stainless steel and Inconel 625. Additive Manufacturing, 32, 101037‐1–101037‐16. doi:10.1016/j.addma.2020.101037

      56 56 Anderson, R., Terrell, J., Schneider, J., Thompson, S., & Gradl, P. (2019). Characteristics of bi‐metallic interfaces formed during direct energy deposition additive manufacturing processing. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 50(4), 1921–1930. doi:10.1007/s11663‐019‐01612‐1

      57 57 Li, P., Gong, Y., Xu, Y., Qi, Y., Sun, Y., & Zhang, H. (2019). Inconel‐steel functionally bimetal materials by hybrid directed energy deposition and thermal milling: Microstructure and mechanical properties. Archives of Civil and Mechanical Engineering, 19(3), 820–831. doi:10.1016/j.acme.2019.03.002

      58 58 Shang, C., Wang, C., Xu, G., Li, C., & You, J. (2019). Laser additive manufacturing of TA15: Inconel 718 bimetallic structure via Nb/Cu multi‐interlayer. Vacuum, 169(July), 108888. doi:10.1016/j.vacuum.2019.108888

      59 59 Savitha, U., Srinivas, V., Jagan Reddy, G., Gokhale, A. A., & Sundararaman, M. (2018). Additive laser deposition of YSZ on Ni base superalloy for thermal barrier application. Surface and Coatings Technology, 354, 257–267. doi:10.1016/j.surfcoat.2018.08.089

      60 60 Zuback, J. S., Palmer, T. A., & DebRoy, T. (2019). Additive manufacturing of functionally graded transition joints between ferritic and austenitic alloys. Journal of Alloys and Compounds, 770, 995–1003. doi:10.1016/j.jallcom.2018.08.197

      61 61 Lu, Y., Huang, Y., & Wu, J. (2018). Laser additive manufacturing of structural‐graded bulk metallic glass. Journal of Alloys and Compounds, 766, 506–510. doi:10.1016/j.jallcom.2018.06.259

      62 62 Liu, Y., Liang, C., Liu, W., Ma, Y., Liu, C., & Zhang, C. (2018). Dilution of Al and V through laser powder deposition enables a continuously compositionally Ti/Ti6Al4V graded structure. Journal of Alloys and Compounds, 763, 376–383. doi:10.1016/j.jallcom.2018.05.289

      63 63 Bobbio, L. D., Otis, R. A., Borgonia, J. P., Dillon, R. P., Shapiro, A. A., Liu, Z.‐K., & Beese, A. M. (2017). Additive manufacturing of a functionally graded material from Ti‐6Al‐4V to Invar: Experimental characterization and thermodynamic calculations. Acta Materialia, 127, 133–142. doi:10.1016/j.actamat.2016.12.070

      64 64 Nartu, M. S. K. K. Y., Mantri, S. A., Pantawane, M. V., Ho, Y.‐H., McWilliams, B., Cho, K., . . . Banerjee, R. (2020). In situ reactions during direct laser deposition of Ti‐B<inf>4</inf>C composites. Scripta Materialia, 183, 28–32. doi:10.1016/j.scriptamat.2020.03.021

      65 65 Traxel, K. D., & Bandyopadhyay, A. (2020). Naturally architected microstructures in structural materials via additive manufacturing. Additive Manufacturing, 34, 101243‐1–101243‐14. doi:10.1016/j.addma.2020.101243

      66 66 Lanfant, B., Bär, F., Mohanta, A., & Leparoux, M. (2019). Fabrication of metal matrix composite by laser metal deposition‐a new process approach by direct dry injection of nanopowders. Materials, 12(21), 3584‐1–3584‐16. doi:10.3390/ma12213584

      67 67 Hu, Y., Cong, W., Wang, X., Li, Y., Ning, F., & Wang, H. (2018). Laser deposition‐additive manufacturing of TiB‐Ti composites with