Seifedine Kadry

Big Data


Скачать книгу

and node D. Sharding improves the fault tolerance of the system as the failure of a node affects only the block of the data stored in that particular node.

      2.2.2 Data Replication

image

      2.2.2.1 Master‐Slave Model

      2.2.2.2 Peer‐to‐Peer Model

image

      In the peer‐to‐peer model the workload or the task is partitioned among the nodes. The nodes consume as well as donate the resources. Resources such as disk storage space, memory, bandwidth, processing power, and so forth, are shared among the nodes.

      Reliability of this type of configuration is improved through replication. Replication is the process of sharing the same data across multiple nodes to avoid single point of failure. Also, the nodes connected in a peer‐to‐peer configuration are geographically distributed across the globe.

      2.2.3 Sharding and Replication

image

      A file system is a way of storing and organizing the data on storage devices such as hard drives, DVDs, and so forth, and to keep track of the files stored on them. The file is the smallest unit of storage defined by the file system to pile the data. These file systems store and retrieve data for the application to run effectively and efficiently on the operating systems. A distributed file system stores the files across cluster nodes and allows the clients to access the files from the cluster. Though physically the files are distributed across the nodes, logically it appears to the client as if the files are residing on their local machine. Since a distributed file system provides access to more than one client simultaneously, the server has a mechanism to organize updates for the clients to access the current updated version of the file, and no version conflicts arise. Big data widely adopts a distributed file system known as Hadoop Distributed File System (HDFS).

      The key concept of a distributed file system is the data replication where the copies of data called replicas are distributed on multiple cluster nodes so that there is no single point of failure, which increases the reliability. The client can communicate with any of the closest available nodes to reduce latency and network traffic. Fault tolerance is achieved through data replication as the data will not be lost in case of node failure due to the redundancy in the data across nodes.