Alan T. Norman

Aprendizado De Máquina Em Ação


Скачать книгу

auto-conduzidos e outros veículos para o transporte de mercadorias. Atualmente, grande parte da agricultura e manufatura é automatizada, de forma que o aprendizado de máquina está provendo os alimentos que consumimos e os bens que utilizamos. A tendência para a automação está só acelerando. Outras aplicações de aprendizado de máquina podem fundamentalmente mudar tarefas feitas por humanos no dia-a-dia, na medida em que as máquinas se tornam mais aptas para controlar processos e concluir trabalhos de conhecimento.

      Como o aprendizado de máquina terá um impacto tão profundo na vida diária, é importante que todos tenham acesso à informação sobre como isso funciona. É por isso que escrevi esse livro. O cenário atual de informações sobre aprendizado de máquina está dividido.

      Primeiramente, há explicações para o público geral, que dificultam os conceitos. Estes "explicadores" fazem o aprendizado de máquina parecer como algo que somente especialistas pudessem entender.

      Em segundo lugar, há documentos técnicos escritos por especialistas para especialistas. Eles excluem o público geral, com jargões e complexidades. Obviamente, escrever e executar um algoritmo de aprendizado de máquina é um feito enormemente técnico, e essas explicações técnicas são importantes. No entanto, há um buraco na atual literatura a respeito de aprendizado de máquina.

      E quanto aos leigos que realmente querem entender essa revolução tecnológica, não necessariamente sabendo escrever códigos, mas sim compreender as mudanças que estão ocorrendo à sua volta? A compreensão dos princípios básicos sobre aprendizado de máquina não deveria estar limitada a uma elite tecnológica. Essas mudanças afetarão a todos nós. Elas têm consequências éticas, e é importante que o público saiba sobre todos os benefícios e desvantagens do aprendizado de máquina.

      É por isso que escrevi esse livro. Se isso soa interessante para você, eu espero que aproveite.

      Caso essa declaração na introdução não tenha sido suficientemente clara: este não é um livro sobre codificação. Não é para cientistas da computação aprenderem como criar algoritmos de aprendizado de máquina.

      Para começar, não sou nem um pouco qualificado para escrever um livro sobre isso. Pessoas passam anos aprendendo as complexidades da escrita de algoritmos e redes de treinamento. Existem programas inteiros de PhD que exploram os meandros desta área, desenhando em álgebra linear e análise preditiva. Se você mergulhar fundo nos detalhes do aprendizado de máquina e amar isso o suficiente para obter um PhD, você poderá facilmente sair ganhando entre 300 e 600 mil dólares, trabalhando para uma grande empresa de tecnologia. É dessa forma que essas atividades são tão raras e valiosas.

      Eu não tenho essas qualificações, e não vejo mal algum nisso. Se você chegou até esse livro, você é um iniciante interessado em aprendizado de máquina. Provavelmente, você não é um técnico, ou se é, está buscando um livro sobre seus fundamentos, para iniciar com os conceitos básicos. Como um escritor da área de tecnologia, estou constantemente aprendendo sobre tecnologias. Sou um estudante de aprendizado de máquina e lembro-me como é ser um iniciante. Posso ajudar a explicar os conceitos básicos, de uma forma fácil de entender. Uma vez que tiver lido esse livro, você terá uma sólida compreensão sobre os princípios fundamentais que facilitarão seu acesso a um livro mais avançado, caso queira aprender mais.

      Dito isso, caso sinta que já entende os princípios básicos ou realmente queira um livro que o ensine os detalhes práticos sobre como escrever e treinar um algoritmo de aprendizado de máquina, então provavelmente esse livro não é para você.

      O real objetivo desse livro é ser uma introdução fácil de ler sobre aprendizado de máquina. Meu objetivo é escrever um livro que qualquer um possa ler, mantendo-o, ao mesmo tempo, fiel aos princípios sobre aprendizado de máquina, sem inferiorizar seus conceitos. Estou certo da inteligência de meus leitores, e não acho que um livro para iniciantes tenha que necessariamente sacrificar complexidades e nuances. Sendo assim, este não é um livro grande e nem tampouco abrangente. Aqueles interessados no tema vão querer se aprofundar através de outros livros e pesquisas.

      Neste livro, veremos os conceitos básicos e tipos de aprendizado de máquina. Investigaremos como eles funcionam. Então, exploraremos questões sobre conjunto de dados, e escrita e treinamento de algoritmos. Por fim, veremos casos de aplicação do aprendizado de máquina no mundo real, e áreas onde ele deverá ser usado no futuro.

      Mais uma vez, bem-vindo ao aprendizado de máquina. Vamos mergulhar nisso...

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4QCGRXhpZgAATU0AKgAAAAgABQESAAMAAAABAAEAAAEaAAUAAAABAAAASgEbAAUAAAABAAAA UgEoAAMAAAABAAEAAAExAAIAAAAkAAAAWgAAAAAAAAEsAAAAAQAAASwAAAABUGljTW9ua2V5IGh0 dHBzOi8vd3d3LnBpY21vbmtleS5jb20A/9sAhAACAQEBAQECAQEBAgICAgIEAwICAgIFBAQDBAYF BgYGBQYGBgcJCAYHCQcGBggLCAkKCgoKCgYICwwLCgwJCgoKAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCAxACCgDAREA AhEBAxEB/8QBogAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoLEAACAQMDAgQDBQUEBAAAAX0B AgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpD REVGR0h