(2017). A novel centralized PV power plant controller for reducing the voltage unbalance factor at transmission level interconnection. IEEE Transactions on Energy Conversion 32 (1): 233–243. https://doi.org/10.1109/TEC.2016.2620477.
92 92. Glavic, M. and Van Cutsem, T. (2011). A short survey of methods for voltage instability detection. 2011 IEEE Power and Energy Society General Meeting, Detroit, MI (2011), pp. 1–8, doi: https://doi.org/10.1109/PES.2011.6039311.
93 93. Robbins, B.A., Hadjicostis, C.N., and Dominguez‐Garcia, A.D. (2013). A two‐stage distributed architecture for voltage control in power distribution systems. IEEE Transactions on Power Systems 28 (2): 1470–1482.
94 94. Zeraati, M., Hamedani Golshan, M.E., and Guerrero, J.M. (2019). A consensus‐based cooperative control of PEV battery and PV active power curtailment for voltage regulation in distribution networks. IEEE Transactions on Smart Grid 10 (1): 670–680.
95 95. Li, Z., Guo, Q., Sun, H. et al. (2018). A distributed transmission‐distribution coupled static voltage stability assessment method considering distributed generation. IEEE Transactions on Power Systems 33 (3): 2621–2632.
96 96. Popovic, D.H., Hill, D.J., and Wu, Q. (2002). Optimal voltage security control of power systems. International Journal of Electrical Power & Energy Systems 24 (4): 305–320.
97 97. Larsson, M. and Karlsson, D. (2003). Coordinated system protection scheme against voltage collapse using heuristic search and predictive control. IEEE Transactions on Power Systems 18 (3): 1001–1006.
98 98. Ma, H. and Hill, D.J. (2018). A fast local search scheme for adaptive coordinated voltage control. IEEE Transactions on Power Systems 33 (3): 2321–2330.
99 99. Ghahremani, E. and Kamwa, I. (2016). Local and wide‐area PMU‐based decentralized dynamic state estimation in multi‐machine power systems. IEEE Transactions on Power Systems 31 (1): 547–562.
100 100. Raoufat, M.E., Tomsovic, K., and Djouadi, S.M. (2016). Virtual actuators for wide‐area damping control of power systems. IEEE Transactions on Power Systems 31 (6): 4703–4711.
101 101. Mohagheghi, S., Venayagamoorthy, G.K., and Harley, R.G. (2007). Optimal wide area controller and state predictor for a power system. IEEE Transactions on Power Systems 22 (2): 693–705.
102 102. Mithulananthan, N., Canizares, C.A., Reeve, J., and Rogers, G.J. (2003). Comparison of PSS, SVC, and STATCOM controllers for damping power system oscillations. IEEE Transactions on Power Systems 18 (2): 786–792.
103 103. Bian, X.Y., Geng, Y., Lo, K.L. et al. (2016). Coordination of PSSs and SVC damping controller to improve probabilistic small‐signal stability \\of power system with wind farm integration. IEEE Transactions on Power Systems 31 (3): 2371–2382.
104 104. Padhy, B.P., Srivastava, S.C., and Verma, N.K. (2017). A wide‐area damping controller considering network input and output delays and packet drop. IEEE Transactions on Power Systems 32 (1): 166–176.
105 105. Giri, J. (2015). Proactive management of the future grid. IEEE Power and Energy Technology Systems Journal 2 (2): 43–52.
106 106. Wu, X., Dorer, F., and Jovanovic, M.R. (2016). Input‐output analysis and decentralized optimal control of inter‐area oscillations in power systems. IEEE Transactions on Power Systems 31 (3): 2434–2444.
107 107. Zacharia, L., Hadjidemetriou, L., and Kyriakides, E. (2018). Integration of renewables into the wide area control scheme for damping power oscillations. IEEE Transactions on Power Systems 33 (5): 5778–5786.
108 108. Surinkaew, T. and Ngamroo, I. (2016). Hierarchical coordinated wide area and local controls of DFIG wind turbine and PSS for robust power oscillation damping. IEEE Transactions on Sustainable Energy 7 (3): 943–955.
109 109. Wang, S., Meng, X., and Chen, T. (2012). Wide‐area control of power systems through delayed network communication. IEEE Transactions on Control Systems Technology 20 (2): 495–503.
110 110. Mokhtari, M. and Aminifar, F. (2014). Toward wide‐area oscillation control through doubly‐fed induction generator wind farms. IEEE Transactions on Power Systems 29 (6): 2985–2992.
111 111. Zhang, Y. and Bose, A. (2008). Design of wide‐area damping controllers for inter‐area oscillations. IEEE Transactions on Power Systems 23 (3): 1136–1143.
112 112. Zenelis, I. and Wang, X. (2018). Wide‐area damping control for interarea oscillations in power grids based on PMU measurements. IEEE Control Systems Letters 2 (4): 719–724.
113 113. Youseian, R., Bhattarai, R., and Kamalasadan, S. (2017). Transient stability enhancement of power grid with integrated wide area control of wind farms and synchronous generators. IEEE Transactions on Power Systems 32 (6): 4818–4831.
114 114. El‐Guindy, A., Schaab, K., Schurmann, B. et al. (2017). Formal lpv control for transient stability of power systems. In: 2017 IEEE Power & Energy Society General Meeting, 1–5. IEEE.
115 115. Nogueira, F.G., Junior, W.B., da Costa Junior, C.T., and Lana, J.J. (2018). LPV‐based power system stabilizer: identification, control and field tests. Control Engineering Practice 72: 53–67.
116 116. Toth, R. (2010). Modeling and Identification of Linear Parameter‐Varying Systems, vol. 403. Springer.
117 117. Golpira, H. and Bevrani, H. (2020). Frequency Analysis Based Centralized Load Shedding and Island Detection Using PMU Data. Technical Report, Iran Grid Management Company, IGMC1927, (In Persian).
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.