Группа авторов

Endodontic Materials in Clinical Practice


Скачать книгу

– that means everywhere in the mouth and surrounding structures – is the same. This is a thermodynamic condition that cannot be gainsaid. ‘Humidity’ is therefore 100%, always (although this really is not the proper term, except in a void, where it refers to the relative saturation of the vapour – ‘wet’ is preferable). How long it takes is a separate matter: diffusivity depends on the medium (we assume close enough to constant temperature). Even so, approach to equilibrium can be expected within a couple of weeks at most in the majority of materials and relevant circumstances [12, 13]. Any reactions that are possible (including absorption, and thus swelling) are therefore necessarily going to occur, but the extent in a given timeframe – the rate – depends on the availability of the water: gradients, diffusivity, and reaction kinetics. Avoidance of ‘leakage’, meaning actual liquid flow or diffusion through liquid pathways, may properly be the goal, but exclusion of water as a reactive substance is not possible.

      In the context of leakage, there is clearly much interest in how well a material may be attached to tooth tissue. Commonly, this is referred to in terms of ‘bond strength’, yet it is acknowledged that for many materials this is ordinarily attributable only to a mechanical key – the result of the interlocking of the cast asperities of the material on those of the substrate [14]. It would seem preferable in such cases simply to refer to ‘retention’, as then it is accepted that there is nothing else going on. This thought raises an interesting point: on what is actual bond strength measured? Most systems of interest in dentistry involve a carefully prepared rough surface, whether through instrumentation, grit‐blasting, or etching, seemingly acknowledging that this is the main source of interaction. Would it not be sensible to test the adhesive qualities of materials using a smoothly polished, unetched substrate? That way, the true bond strength could be ascertained; that is, the benefit of any chemical interactions could be measured directly, instead of being confounded by the mechanical key. Proper efforts could then be directed to improving the chemistry, even if the key was to be used to augment the retention in normal service.

      In passing, we may note that there is no such thing as a meaningful shear test in dentistry, as has been shown several times. Its continued use – in numerous highly idiosyncratic and ill‐controlled forms – is both pointless and bemusing: the results are uninterpretable, and certainly of no clinical relevance. Whilst that leaves axial tension as the only viable method, no material in any dental context is known to fail in that mode either: the service interpretability of all such results is problematic, therefore. A related problem occurs with ‘push‐out’ tests. The assumed interfacial shear is confounded by parasitic stresses and distortions that vitiate intent and thus interpretation. The absence of appreciation of the mechanics of such systems is disappointing.

      Lack of thinking is also evident in the use of methods taken from dental International Standards (ISO) documents, showing both a misapprehension of their purpose and unfamiliarity with the subtleties – indeed, outright difficulties – of testing, especially for mechanical properties, which is an exacting field [15]. Such ‘standardized’ methods are to be understood as economically sensible means of ascertaining safety and efficacy; as quality‐control (QC) methods. To call them quick and dirty is perhaps going too far, but they cannot necessarily represent the last word for scientific studies, because the manufacturer, for example, would not be prepared to pay for such accreditation testing, and they make their views known in the drafting committees and national bodies. It is essential to give a full appraisal of a proposed method, refining and elaborating it as necessary, to avoid pitfalls and increase the value of the results in terms of clinical relevance and interpretability. The fact that there are no universally recognized methods of unimpeachable protocol speaks of the difficulties of doing a good job, but also imposes severe requirements on those doing any testing. That severity is rarely even acknowledged, let alone honoured. Crude methods are taken from the literature simply because they have been used before (sometimes for many years), and that precedent is the only defence – there is no science. But on top of that, modifications are made without justification, seemingly for convenience. Comparability between papers evaporates.

      As we should appreciate, all materials used in dentistry represent compromise. It is simply not possible to obtain all desirable attributes (chemical, physical, mechanical, biological, economic, practical) simultaneously. We routinely trade off one thing against another, and accept some deficiency for some other benefit. There are commonly strong grounds for believing that ideality is unapproachable: physics is a hard taskmaster, and thermodynamics ineluctable. Nevertheless, it is proper to enquire as to the amelioration or refinement that might be possible. This should be on rational grounds, not guesswork or wishful thinking. We have seen such awkward proposals before