setting reaction competition. J. Dent. Res. 89 (1): 82–86.
191 191 Schmalz, G., Schweikl, H., Esch, J., and Hiller, K.A. (1996). Evaluation of a dentin barrier test by cyctotoxicity testing of various dental cements. J. Endod. 22 (3): 112–115.
192 192 de Souza Costa, C.A., Hebling, J., Garcia‐Godoy, F., and Hanks, C.T. (2003). In vitro cytotoxicity of five glass‐ionomer cements. Biomaterials 24 (21): 3853–3858.
193 193 Heys, R.J. and Fitzgerald, M. (1991). Microleakage of three cement bases. J. Dent. Res. 70 (1): 55–58.
194 194 Mickenautsch, S., Yengopal, V., and Banerjee, A. (2010). Pulp response to resin‐modified glass ionomer and calcium hydroxide cements in deep cavities: a quantitative systematic review. Dent. Mater. 26 (8): 761–770.
195 195 Ribeiro, A.P.D., Sacono, N.T., Soares, D.G. et al. (2019). Human pulp response to conventional and resin‐modified glass ionomer cements applied in very deep cavities. Clin. Oral Invest. 24: 1739–1748.
196 196 Kunert, M. and Lukomska‐Szymanska, M. (2020). Bio‐inductive materials in direct and indirect pulp capping – a review article. Materials (Basel) 13 (5): 1204.
197 197 Benetti, A.R., Michou, S., Larsen, L. et al. (2019). Adhesion and marginal adaptation of a claimed bioactive, restorative material. Biomater. Investig. Dent. 6 (1): 90–98.
198 198 May, E. and Donly, K.J. (2017). Fluoride release and re‐release from a bioactive restorative material. Am. J. Dent. 30 (6): 305–308.
199 199 Hashem, D., Mannocci, F., Patel, S. et al. (2019). Evaluation of the efficacy of calcium silicate vs. glass ionomer cement indirect pulp capping and restoration assessment criteria: a randomised controlled clinical trial – 2‐year results. Clin. Oral Investig. 23 (4): 1931–1939.
200 200 Hench, L.L. (2006). The story of Bioglass. J. Mater. Sci. Mater. Med. 17 (11): 967–978.
201 201 Hench, L.L., Xynos, I.D., Buttery, L.D., and Polak, J.M. (2000). Bioactive materials to control cell cycle. Mater. Res. Innovat. 3 (6): 313–323.
202 202 Xynos, I.D., Hukkanen, M.V., Batten, J.J. et al. (2000). Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif. Tissue Int. 67 (4): 321–329.
203 203 Stanley, H.R., Clark, A.E., Pameijer, C.H., and Louw, N.P. (2001). Pulp capping with a modified bioglass formula (#A68‐modified). Am. J. Dent. 14 (4): 227–232.
204 204 Hanada, K., Morotomi, T., Washio, A. et al. (2019). In vitro and in vivo effects of a novel bioactive glass‐based cement used as a direct pulp capping agent. J. Biomed. Mater. Res. B Appl. Biomater. 107 (1): 161–168.
205 205 Esposito, M., Grusovin, M.G., Papanikolaou, N. et al. (2009). Enamel matrix derivative (Emdogain(R)) for periodontal tissue regeneration in intrabony defects. Cochrane Database Syst. Rev. (4): CD003875.
206 206 Torabinejad, M., Parirokh, M., and Dummer, P.M.H. (2018). Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview – Part II: Other clinical applications and complications. Int. Endod. J. 51 (3): 284–317.
207 207 Rutherford, B. and Fitzgerald, M. (1995). A new biological approach to vital pulp therapy. Crit. Rev. Oral Biol. Med. 6 (3): 218–229.
208 208 McKay, W.F., Peckham, S.M., and Badura, J.M. (2007). A comprehensive clinical review of recombinant human bone morphogenetic protein‐2 (INFUSE Bone Graft). Int. Orthop. 31 (6): 729–734.
209 209 Iohara, K., Nakashima, M., Ito, M. et al. (2004). Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J. Dent. Res. 83 (8): 590–595.
210 210 Kikuchi, N., Kitamura, C., Morotomi, T. et al. (2007). Formation of dentin‐like particles in dentin defects above exposed pulp by controlled release of fibroblast growth factor 2 from gelatin hydrogels. J. Endod. 33 (10): 1198–1202.
211 211 Ishimatsu, H., Kitamura, C., Morotomi, T. et al. (2009). Formation of dentinal bridge on surface of regenerated dental pulp in dentin defects by controlled release of fibroblast growth factor‐2 from gelatin hydrogels. J. Endod. 35 (6): 858–865.
212 212 Zhang, D., Li, Q., Rao, L. et al. (2015). Effect of 5‐Aza‐2′‐deoxycytidine on odontogenic differentiation of human dental pulp cells. J. Endod. 41 (5): 640–645.
213 213 Paino, F., La Noce, M., Tirino, V. et al. (2014). Histone deacetylase inhibition with valproic acid downregulates osteocalcin gene expression in human dental pulp stem cells and osteoblasts: evidence for HDAC2 involvement. Stem Cells 32 (1): 279–289.
214 214 Yamauchi, Y., Cooper, P.R., Shimizu, E. et al. (2020). Histone acetylation as a regenerative target in the dentine–pulp complex. Front. Genet. 11: 1.
215 215 Duncan, H.F., Smith, A.J., Fleming, G.J., and Cooper, P.R. (2012). Histone deacetylase inhibitors induced differentiation and accelerated mineralization of pulp‐derived cells. J. Endod. 38 (3): 339–345.
216 216 Duncan, H.F., Smith, A.J., Fleming, G.J. et al. (2016). The histone‐deacetylase‐inhibitor suberoylanilide hydroxamic acid promotes dental pulp repair mechanisms through modulation of matrix metalloproteinase‐13 activity. J. Cell. Physiol. 231 (4): 798–816.
217 217 Jin, H., Park, J.Y., Choi, H., and Choung, P.H. (2013). HDAC inhibitor trichostatin A promotes proliferation and odontoblast differentiation of human dental pulp stem cells. Tissue Eng. Part A 19 (5–6): 613–624.
218 218 Careddu, R. and Duncan, H.F. (2018). How does the pulpal response to Biodentine and ProRoot mineral trioxide aggregate compare in the laboratory and clinic? Br. Dent. J. 225: 743–749.
219 219 ESE (2006). Quality guidelines for endodontic treatment: consensus report of the European Society of Endodontology. Int. Endod. J. 39 (12): 921–930.
220 220 Galani, M., Tewari, S., Sangwan, P. et al. (2017). Comparative evaluation of postoperative pain and success rate after pulpotomy and root canal treatment in cariously exposed mature permanent molars: a randomized controlled trial. J. Endod. 43 (12): 1953–1962.
221 221 Linsuwanont, P., Wimonsutthikul, K., Pothimoke, U., and Santiwong, B. (2017). Treatment outcomes of mineral trioxide aggregate pulpotomy in vital permanent teeth with carious pulp exposure: the retrospective study. J. Endod. 43 (2): 225–230.
222 222 Qudeimat, M.A., Alyahya, A., and Hasan, A.A. (2017). Mineral trioxide aggregate pulpotomy for permanent molars with clinical signs indicative of irreversible pulpitis: a preliminary study. Int. Endod. J. 50 (2): 126–134.
223 223 Camilleri, J. (2014). Color stability of white mineral trioxide aggregate in contact with hypochlorite solution. J. Endod. 40 (3): 436–440.
224 224 Felman, D. and Parashos, P. (2013). Coronal tooth discoloration and white mineral trioxide aggregate. J. Endod. 39 (4): 484–487.
225 225 Marciano, M.A., Costa, R.M., Camilleri, J. et al. (2014). Assessment of color stability of white mineral trioxide aggregate angelus and bismuth oxide in contact with tooth structure. J. Endod. 40 (8): 1235–1240.
226 226 Camilleri, J. (2015). Staining potential of Neo MTA Plus, MTA Plus, and Biodentine used for pulpotomy procedures. J. Endod. 41 (7): 1139–1145.
227 227 Kohli, M.R., Yamaguchi, M., Setzer, F.C., and Karabucak, B. (2015). Spectrophotometric analysis of coronal tooth discoloration induced by various bioceramic cements and other endodontic materials. J. Endod. 41 (11): 1862–1866.
228 228 Valles, M., Roig, M., Duran‐Sindreu, F. et al. (2015). Color stability of teeth restored with biodentine: a 6‐month in vitro study. J. Endod. 41 (7): 1157–1160.
229 229 Keskin, C., Demiryurek, E.O., and Ozyurek, T. (2015). Color stabilities of calcium silicate‐based materials in contact with different irrigation solutions. J. Endod. 41 (3): 409–411.
230 230 Kaup, M., Schafer, E., and Dammaschke, T. (2015). An in vitro study of different material properties of Biodentine compared to ProRoot MTA. Head Face Med. 11: 16.
231 231 Lucas, C.P., Viapiana,