Группа авторов

Polymer Nanocomposite Materials


Скачать книгу

books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

      Library of Congress Card No.: applied for

      British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.

      Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

      © 2021 WILEY-VCH GmbH, Boschstr. 12, 69469 Weinheim, Germany

      All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

      Print ISBN: 978-3-527-34744-5 ePDF ISBN: 978-3-527-82648-3 ePub ISBN: 978-3-527-82650-6 oBook ISBN: 978-3-527-82649-0

      Polymer nanocomposites combining the merits of polymers (e.g. light weight, flexibility, low cost) and functional properties of nanomaterials caused by small size effect, quantum size effect, and surface/boundary effect show adjustable optical, electrical, biological, and mechanical characteristics and attract extensive researches. Various polymer nanocomposites with amazing performances have been prepared and utilized for developing integrated electronic devices in a number of emerging areas and exhibit huge commercial value, thanks to their simple preparation techniques and countless combinations. This book highlights the recent researches about the basic conceptions, preparation/characterization techniques, properties, device design strategies, and intriguing applications of polymer nanocomposites. The existing/potential application prospects and challenges for the polymer nanocomposites are also discussed. We expect that this book can offer a well-timed assistance to the academic researchers in the rapidly expanding applications including environment, sensor, energy conversion/storage, biology, and information storage as a simple and convenience instrument.

      Herein, we would like to thank all the authors who have made contributions in this book. We want to express our sincerest appreciation and respect to Ms. Katherine Wong, Dr. Shaoyu Qian, Ms. Pinky Sathishkumar, Mathangi Balasubramanian and other editors at Wiley for all the help offered during the whole book editing process. We also want to thank all the readers interested in this book. In this book, we have introduced the concepts, properties, and mechanisms of polymer nanocomposites and summarized their recent applications in some hottest fields. The application challenges, commercial prospects, and potential research directions of polymer nanocomposites are also pointed out and discussed. We aim to provide a comprehensive, popular, and up-to-date book for the researchers. Although we have done our best to make this book better, there still inevitably are some omissions and mistakes. Please grant your criticisms and instructions.

      We hope that this book can provide references and guides for researchers in polymer nanocomposites based electron devices, as well as promote the interests of the students to this field.

      01 June 2020

       Ye Zhou

       Guanglong Ding

      1

      Introduction of Polymer Nanocomposites

       Teng Li1, Guanglong Ding2, Su-Ting Han1, and Ye Zhou2

       1 Shenzhen University, Institute of Microscale Optoelectronics, Room 909, Shenzhen, Guangdong, 518060, China

       2 Shenzhen University, Institute for Advanced Study, Room 358, Shenzhen, Guangdong, 518060, China

      Polymers have been one of the most important components in almost every area of human activity today. Nowadays, polymers as multifunctional materials gradually replace metals, glass, paper, and other traditional materials in various applications due to its lightweight, flexibility, and low cost [1]. In most of their applications, the applied materials are not composed of a single chemical component but mixture systems of multiple components with polymers and other additives. By incorporating different additives, such as metal, minerals, or even air, a wide variety of materials with unique physical properties and competitive production costs can be produced. For example, glass fiber-reinforced plastics are composite materials manufactured by laminating unsaturated polyester resin with glass fiber and filler, which can increase mechanical strength and heat resistance [2].