an observer rather than a theorizer, seems to have been content to accept the theory of epicycles as he found it, though his studies added to its complexities; and Hipparchus was the dominant scientific personality of his century. What he believed became as a law to his immediate successors. His tenets were accepted as final by their great popularizer, Ptolemy, three centuries later; and so the heliocentric theory of Aristarchus passed under a cloud almost at the hour of its dawning, there to remain obscured and forgotten for the long lapse of centuries. A thousand pities that the greatest observing astronomer of antiquity could not, like one of his great precursors, have approached astronomy from the stand-point of geography and poetry. Had he done so, perhaps he might have reflected, like Aristarchus before him, that it seems absurd for our earth to hold the giant sun in thraldom; then perhaps his imagination would have reached out to the heliocentric doctrine, and the cobweb hypothesis of epicycles, with that yet more intangible figment of the perfect circle, might have been wiped away.
But it was not to be. With Aristarchus the scientific imagination had reached its highest flight; but with Hipparchus it was beginning to settle back into regions of foggier atmosphere and narrower horizons. For what, after all, does it matter that Hipparchus should go on to measure the precise length of the year and the apparent size of the moon's disk; that he should make a chart of the heavens showing the place of 1080 stars; even that he should discover the precession of the equinox;—what, after all, is the significance of these details as against the all-essential fact that the greatest scientific authority of his century—the one truly heroic scientific figure of his epoch—should have lent all the forces of his commanding influence to the old, false theory of cosmology, when the true theory had been propounded and when he, perhaps, was the only man in the world who might have substantiated and vitalized that theory? It is easy to overestimate the influence of any single man, and, contrariwise, to underestimate the power of the Zeitgeist. But when we reflect that the doctrines of Hipparchus, as promulgated by Ptolemy, became, as it were, the last word of astronomical science for both the Eastern and Western worlds, and so continued after a thousand years, it is perhaps not too much to say that Hipparchus, "the lover of truth," missed one of the greatest opportunities for the promulgation of truth ever vouchsafed to a devotee of pure science.
But all this, of course, detracts nothing from the merits of Hipparchus as an observing astronomer. A few words more must be said as to his specific discoveries in this field. According to his measurement, the tropic year consists of 365 days, 5 hours, and 49 minutes, varying thus only 12 seconds from the true year, as the modern astronomer estimates it. Yet more remarkable, because of the greater difficulties involved, was Hipparchus's attempt to measure the actual distance of the moon. Aristarchus had made a similar attempt before him. Hipparchus based his computations on studies of the moon in eclipse, and he reached the conclusion that the distance of the moon is equal to 59 radii of the earth (in reality it is 60.27 radii). Here, then, was the measure of the base-line of that famous triangle with which Aristarchus had measured the distance of the sun. Hipparchus must have known of that measurement, since he quotes the work of Aristarchus in other fields. Had he now but repeated the experiment of Aristarchus, with his perfected instruments and his perhaps greater observational skill, he was in position to compute the actual distance of the sun in terms not merely of the moon's distance but of the earth's radius. And now there was the experiment of Eratosthenes to give the length of that radius in precise terms. In other words, Hipparchus might have measured the distance of the sun in stadia. But if he had made the attempt—and, indeed, it is more than likely that he did so—the elements of error in his measurements would still have kept him wide of the true figures.
The chief studies of Hipparchus were directed, as we have seen, towards the sun and the moon, but a phenomenon that occurred in the year 134 B.C. led him for a time to give more particular attention to the fixed stars. The phenomenon in question was the sudden outburst of a new star; a phenomenon which has been repeated now and again, but which is sufficiently rare and sufficiently mysterious to have excited the unusual attention of astronomers in all generations. Modern science offers an explanation of the phenomenon, as we shall see in due course. We do not know that Hipparchus attempted to explain it, but he was led to make a chart of the heavens, probably with the idea of guiding future observers in the observation of new stars. Here again Hipparchus was not altogether an innovator, since a chart showing the brightest stars had been made by Eratosthenes; but the new charts were much elaborated.
The studies of Hipparchus led him to observe the stars chiefly with reference to the meridian rather than with reference to their rising, as had hitherto been the custom. In making these studies of the relative position of the stars, Hipparchus was led to compare his observations with those of the Babylonians, which, it was said, Alexander had caused to be transmitted to Greece. He made use also of the observations of Aristarchus and others of his Greek precursors. The result of his comparisons proved that the sphere of the fixed stars had apparently shifted its position in reference to the plane of the sun's orbit—that is to say, the plane of the ecliptic no longer seemed to cut the sphere of the fixed stars at precisely the point where the two coincided in former centuries. The plane of the ecliptic must therefore be conceived as slowly revolving in such a way as gradually to circumnavigate the heavens. This important phenomenon is described as the precession of the equinoxes.
It is much in question whether this phenomenon was not known to the ancient Egyptian astronomers; but in any event, Hipparchus is to be credited with demonstrating the fact and making it known to the Western world. A further service was rendered theoretical astronomy by Hipparchus through his invention of the planosphere, an instrument for the representation of the mechanism of the heavens. His computations of the properties of the spheres led him also to what was virtually a discovery of the method of trigonometry, giving him, therefore, a high position in the field of mathematics. All in all, then, Hipparchus is a most heroic figure. He may well be considered the greatest star-gazer of antiquity, though he cannot, without injustice to his great precursors, be allowed the title which is sometimes given him of "father of systematic astronomy."
CTESIBIUS AND HERO: MAGICIANS OF ALEXANDRIA
Just about the time when Hipparchus was working out at Rhodes his puzzles of celestial mechanics, there was a man in Alexandria who was exercising a strangely inventive genius over mechanical problems of another sort; a man who, following the example set by Archimedes a century before, was studying the problems of matter and putting his studies to practical application through the invention of weird devices. The man's name was Ctesibius. We know scarcely more of him than that he lived in Alexandria, probably in the first half of the second century B.C. His antecedents, the place and exact time of his birth and death, are quite unknown. Neither are we quite certain as to the precise range of his studies or the exact number of his discoveries. It appears that he had a pupil named Hero, whose personality, unfortunately, is scarcely less obscure than that of his master, but who wrote a book through which the record of the master's inventions was preserved to posterity. Hero, indeed, wrote several books, though only one of them has been preserved. The ones that are lost bear the following suggestive titles: On the Construction of Slings; On the Construction of Missiles; On the Automaton; On the Method of Lifting Heavy Bodies; On the Dioptric or Spying-tube. The work that remains is called Pneumatics, and so interesting a work it is as to make us doubly regret the loss of its companion volumes. Had these other books been preserved we should doubtless have a clearer insight than is now possible into some at least of the mechanical problems that exercised the minds of the ancient philosophers. The book that remains is chiefly concerned, as its name implies, with the study of gases, or, rather, with the study of a single gas, this being, of course, the air. But it tells us also of certain studies in the dynamics of water that are most interesting, and for the historian of science most important.
Unfortunately, the pupil of Ctesibius, whatever his ingenuity, was a man with a deficient sense of the ethics of science. He tells us in his preface that the object of his book is to record some ingenious discoveries of others, together with additional discoveries of his own, but nowhere in the book itself does he give us the, slightest clew as to where the line is drawn between the old and the new. Once, in discussing the weight of water, he mentions the law of Archimedes regarding a floating body, but this is the only case in which a scientific principle is traced to its source or in which credit is given to any one for a discovery. This is the more to be regretted because Hero has discussed