Манфред Кетс де Врис

Уравнение счастья


Скачать книгу

Times и Business Week.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAYEBAQFBAYFBQYJBgUGCQsIBgYICwwKCgsKCgwQDAwMDAwMEAwODxAPDgwTExQUExMcGxsbHCAgICAgICAgICD/2wBDAQcHBw0MDRgQEBgaFREVGiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICD/wAARCAFYAO8DAREAAhEBAxEB/8QAHAABAAIDAQEBAAAAAAAAAAAAAAEHBQYIBAMC/8QAUBAAAQMDAQQDCgkJBwEJAQAAAQACAwQFEQYHEiExE0FRFCIyNkJhcXSBsxcYUlRVkZOhsRUjJDNigsHT1AgWQ1NykrLhJjVEY3Oio8LR8f/EABQBAQAAAAAAAAAAAAAAAAAAAAD/xAAUEQEAAAAAAAAAAAAAAAAAAAAA/9oADAMBAAIRAxEAPwDqlAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEFe7b/FSl9ej9zKgpBAQEBAQEBAQEBAQEBAQEBAQEFBbR6ltRrK4ubyY5sXtYwNP3hB4dLWV12u0cJyKWEGorpf8ALp4+Mjj7EH41NfJb5eqm5SMEXTEBkTeTWMG6xvnw0BB5Lbbqq4V0NHSs3553brAEHR1pt0NtttNQReBTxhmT1kcz7Sg9aAgICAg6xQV7tv8AFSl9ej91KgpBAQEBAQEBAQEBAQEBAQEBAQYbVGp6Cw26SoneDOQRTwDwnPxw4dnag57qKiapqJJ5nF8sri97j1k8SUGxbz7JpDvH9HX389+0cHChiJ5+aWT7moNYQWnsg0yQHagn696Gjb/zf/BBZ6CUEICAgIOsUFe7b/FOl9ej91KgpBAQEBAQSghAQEBAQEBAQEBBKDUta6CpdQRieBzaa4s/xSMh4x4Lv/1BVdFou8f3gitlbTvgYH5qJ3NPRiFnfSPD+RAaEHk1VfG3m8y1cUXQUjQ2Gipx/hwRjDG/xPnQeexWiou90goKdpL5XAOI8lvlOPmAQdGUNFS0NHFR0rBHBC3dY0IPugICAglBCDrFBXu2/wAU6X16P3UqCkUEICCUEIJQQgICDSdbar1Far1QUlupTJTS4dI/cL+kJdgsBxwwEG7IJQQglBCCUEICCvNrepTSUEdopZcVFVxqt08REPJP+ooKlpqaeqqI4IGGSWVwaxjeJJKC+NE6NptO0GHhktyk/X1DR1HyGnsCDZkEIJQQgICAg6xQV7tu8VKX16P3MqCkEBAQSghBKCEBAQTkoCAghAQfiaaKGN0kr2xxtGXPccADzkoNSuO1TS9JMYYjLXSA4/R297nzOdgH2IP1Ua9qDaRXUVjrnyOe1rY5IyAQfK3m734IMlFV6hrKXuioZHZ6fc35MnpZwMZPA4YzHnygoi8VEdbdqqaAySRyynojId+QjPDePaUFs7NdFG0UxuVwj3bjOMRxu/w4z/8AYoN6QEBAQEBAQEHWKCvdt/ipS+vR+5lQUighAQSghBKCEEoCD5zSdFDJLje3Gl26OZwM4QadobXtTqKvqqWelbD0TekjezOMZxuuz18UG6ICDC6m1daNOwNfWuLppB+Zpo/Dd5+wDzlBXNOdWbQqzEjxTWaGTD9zg1oPHHa92EFiWDRen7I0Glp96oHOpl76TPmzy9iDO9aDRdq2o3W6zNt9O7FRX7zZO0ReV6M5wgwmzHQvSGO+3KMGPg+gjJ68/rHD2cEFqICCUEICCUGvQa50/PfTZI5H92h7ovA7wvZnebvezsQbCghB1igr3bf4p0vr0fuZUFIoCAghBKCEBBKCEBB+IqeCHe6KJke9xduNDcnz4QfRBpO0LWlxskEcFvgLZ5jgVTwCBjnuN5k8eZGEGn6Z0PX6huL6i8TPdG12ap+/l+SM7mePfdo6kFv0dFS0VMympY2xQRgNYxoxyQfdB8qqphpaeWpnO7DC0ySO7GtGSgq2y2ObWupqq+3AOFnY/FOw8N8MPesA7MDLkFqtYxjQ1jQ1jRhrRwAHYglAQEBAQEGGi0fp2K8m8x0gbcC4v6Tedjfdzdu53cnPYgzSCEHWKCvdt/ipS+vR+5lQUighAQSghAQEBBKCEBBgtU3W/wBBTx/kihZUvfnpJ5XhscQHW7Jb+KDWrPpKrrqx9ZU1Ek8szcy3Z3VnjuUjHch/5n1IN9paSnpYGU9OwRxRjDWj8fSUH1QEHjvFshultnt87nNhqBuvLOBxnP8ABB9qOkp6OkipKZgjggaGxtHYEH2JABJ4AIMNZNX2O9VlTR2+UyS0w3nZaQC3IbvNz1ZIQZlBKDXNa6uGm6OCYU5qZZ37jWZ3W4AySTgoMxaq9lwttLXMaWNqY2yBruY3hnCD1ICAgxN51TYbM9kdxqhDJKMsZhzjjt70FB2Ogr3bf4qUvr0fuZUFIoIQEBAQEBAQSghAQCARgjI7EAICAgIJQQgc+fJBirTpeyWmsqaugpxDNVcJDkkYznDR1DKDKoJQfGqo6Sqj6OqhZPHnO7I0OGe3BQfKjr7bO59PSTxSOp+9kijcDudWCByQetBCAg13U+hrNqKaGesdLHNCC3fhLQSOw7wdyQdpoK923eKlL69H7qVBSCCUEICAgICAglBCAg07Xuqr/Y5KRttoxNHN4czmueN7PBnDHNBtlJLJLSQSys6OWSNrpI/kuIyW+woPsghAQCQ0EngBxJQYu16msd1qZqagqmzzQcZGjPLOMjPMZ7EGUQEBAQEGq6X0DT2C61NwZWSTmcFrY3DGA473fHJyUG1ICAgIOsUFe7bvFOl9ej91KgpBAQEEoIQEBBKCEBAQCMoCAgICCHsa9hY4Za4YI8xQYDT+iLPYq+praLpDJUgt3XuBaxpO9ut4DrA5oMtcrrbrZTGquE7aeDlvv7ewAZJPoQfSirKatpY6ulf0tPMN6N/EZHoOCg+yCUEIJQQglBCAg6xQV7tu8VKX16P3UqCkUEICCUEICDAa2tl7uVkdTWefoanfaXYcWb7Otu8EHr0xRXOisVJTXObpq2Np6R+d7rOBvdeBgIMqghAQSghAQEAkAEnkOaDw2m92y7RPkoJxKInFko5Oa4doQe5BVG1q8R3C50NjpXb0kD/zwHLpJcBrfSB+KCzqGjhttuhpQ4CKljDC48B3o4lBrurdodrsLGRw7tdWyDebExw3Gt7XOGfqQZuwXGquNopq2qp+5Zp27zoOPDjw58eSDIICDz3FlY+gqG0TgyrMbhTvPIPx3p+tBrWz6DV8MFZ/eKSVxL29ziZ287hnePoPBBtyCEHWKCvdt/ipS+vR+6lQUggICAgICAgICAgIJQQgICASACXchz9CCrdk8xOp75G39U9hkx52zYH3PKCyblcKe30M9ZUODIoGF5J4ZwM49JQU9s/tE1/1a+5zfqaaTuqUnre52WN+vig27a5fBSWSO3RSYqK135xo5iFvPPpPBBpWzrR0l6uQqqlpFspTmR3y3jiGA/igvFAQEBAQEBB1igr3bf4qUvr0fupUFIICAgICAgICAgICAgIJQQgxWqq59Bpy41bBl8UDt30u70figprQOq6fT15kqaqMyQVTOimc3m0FwdvAdfEIMhtI1tDe54qK3v3rdBh+/gjfkI7D8nOEGy2O82zRuhaKomZvV1xa6aOEc3uPgl3Y0DCCtNQaguF8uBrq5wMm6GNa0Ya1o6gEFx7LB/2MperL5T/8hQbUJ4Ol6HpG9Nz6LeG/jt3eaD9oCAgICDAai1tYrBNHBXvf0so3gyNm8QO08Qg7QQV7tv8AFSl9ej91KgpBAQSgIIQEEoIQEEoCCEBAQEGE1tj+6V2zy7meg54QEH2qa2rqhGKiV0vQtEcW8c7rRyAQfEAkgDmUHRWj7XJa9N0NFKMSsZvSDsc8lxH3oMLDoSqj10dQmsDqbeMnRcekyW43T1bqDckEoCCEBBhr9pGw3ySOS40/SSRAhj2ucw4PUd3GUHZSCvdt/ipS+vR+5lQUighAQEBBKCEBAQEBAQEBBKDTtqlbUU+k5Y4m5bUvbFM/sbne+8hBRpQEBBuey3T0V1vxnqBmmoAJS08nSZ7wfcSgu9BKCEBAQEBAQdYoK923+KlL69H7qVBSKCEEoCCEBAQEEoIQCQBk8hzQaxpzX9qv12nt1PFJG+MOdG9/J7WnBPm5oNnQSgIPBfra252asoHf+Iic1v8Aq5tP+5BzdURPhnkhfwfG4tcPODhB+EBBeey+yOtumWSys3KitcZn557vJg+rj7UG3oCCUEIJQQglBCDrFBXu2/xUpfXo/cyoKRQQgICAglBCAgICAg8dHZbRRVElRSUcUE836yRjQCUHsQSghBPWg521pGyPVt3Yzg0VUuB+8gwqDO6M09LfL7BTNB6BhEtS7sjaeP18kHQoAAwBgDgAOpAQEBAQEBAQEHWKCvdt/ipS+vR+5lQUgglBCAgICAgICAgICCUBBCD8yydHE+TGdxpdj0DKDmu810tfdqytmGJKiZ8jgO1xQeNBcWxy3wR2Sort39Inl3HP/YZyH1oLBQQglBCCUEICAgIOsUFe7bvFSl9ej9zKgpBBKAgIIQEBAQSghAQSghBKAgx1/u8FntM9wnifNBDjpGx43sOO7niRwyUHOVVI2WqlkYMNe9zmjzE5QfJBemyuIM0ZSu65Hyk+x5CDb0EIJQQgICCUEICDrFBXu27xUpfXo/cyoKRQQgICCUEICAgICAglBCCUEIMFrsZ0fdv/AED+IQc9ICC1NmeubfDRw2GtAp3R57nqCe9eXOzunsPFBZyAglBCAgICAgIOsUFe7bvFSl9ej91KgpBAQEEoIQEBAQEBAQEBBKCEGL1RHFJpy5sl/Vmml3v9pQc4oCAgsXQm0x9EI7beCZKXg2Cq8qPJ5P7WoLcjkjkYHxuD2O4tc05B9BCCUBBKCEBAQEHWKCvdt/inS+vR+6lQUggICAg/Es0UTd+V4jb2uOEGEr9eaTocia4xuePIizI70YZlBqd+2w0YiMVlhe6UnHdEww1o7Wt6z6UGNk2zXJro2wUcbomABzpid9+OZ73AGUGat+1qlnEZq4oqNrvDO++U48zY2k/XhBvdBX0tfSsqqV+/BJ4LiC0/UcFB90EoIQSghBidWkjS91x81l/4oKBtdqnuTqhkBG/T08tSQetsLd5wHnwg8KAgIN30Br6azTMoK9+9aXk8cZdE53WP2e0ILqY9r2h7TvNPEEciEEoJQQgICAg6xQV7tv8AFSl9ej9zKgpFBCAeAyeA6ygrTV21gRF1JYMPe3LZayQcAc4/Njr9JQVlW3S410rpayoknkdxJkcXf/xB5UBAQSx7mODhzHEILq2b6gfW2wd0Qvhy8xxy7znwue0AkDeLnMdg8s4PUg3dAQEBAQYvVI3tN3Qc/wBFl/4FBTuy8Nk1hTUzvBq4ainP78Dwg1eohdDPJC7nG5zD7DhB80BAQWNsy1w6knZZbhIO45Ce5ZXeQ8+ST8k/cUFuICAgICAg6xQV7tv8VKX16P3MqCkEGN1DfqSxWqS4VILmMw1rG83OPIINN2n6thbYaahpJPz9xa2WTcd4MXPBx8ooKhQEBAQEBBm9Matumn6kyUrt+F+Ompn8WOx+B86C+LHe6G9W6Kuo3ZjkHFnlNI5gjzIPegIJQQg8V8j6SzV8fyqeUfWwoKM2fVTKPXNkmkOGNrImyH9lzt133FB8tdUfcesbzTcujrJsDzF5I/FBgkBAQAccUF77OtUi92Vsczs19GBHMOtzR4L/AG9aDbEBBCCUEFB1igr3bf4qUvr0fuZUFIIKR2lTVMN6ko2Pqm0L8SCColc9hcMjfY1xJaOzKDSySeaAgICAgICD12mS3MuMJuLHvoSd2oEeN8NcMbzc8MtzkIINU+lqnuttRMyIOPRSj808jqJDXHB9qDJt1xq1se4LrPujtdk/WeKC69G1F0qdN0U9zO9WSM3nOIwS0k7hPpbhBmkBB+ZY+lifF/mNLfrGEHNjy6ivJPI01R/wf/0QZ7ajl+tKyq8mtZBVN8/SwsJ/92UGqICAgINk2f3xlo1LTTSu3aebMM/ofyPsOEF/BBKCEBAQdYoK923eKlL69H7mVBSKDn7X15N11TWTAYjhPc8Y/Zi737zkoNdQEBAQEBAQEHuobo+Br4ZWNnppQWyRPGeflNPNrh1EIPLPGyOVzY3b7PJd5kFtbONcV1fKLfdHwMijjaylecMe9wwN3n33AdiCxUEIPzJIyJhkeQ1jBvOceAAHEkoOe7zS/lbV9XBZh3X3ZVPFGGeXvu4YzhBn9qluqKQ6fNUzoqw2yGKphON5r4u9w5BoiAgICAEF/wCgtRR3uwQvJ/SaYCGpb+00cHfvDig2NAQEBB1igr3bf4p0vr0fupUFIjmg5pvjS29XAHmKmX/mUHiQEBAQEBAQEBABwg9FPUltZDPIXfm3tcS3wsNOeCDomxagtV6pent0/TNZgSDk5hI5OBQZFBiNYCQ6Wuoj8PuaTH+1BUOyjc+EOyb3+cceno3YQeLaBXVFbrO8SzuLnNqpY256mxu3GgebAQa+gICAgILC2NwXA3qqmYXCgbFio+SXk94PTzKC4EEoIQEHWKCvdt/ipS+vR+6lQUig5613Rmk1bcosYDpekb6JBvfxQYFAQEBAQEBAQEBAQb7sdfU/3kna0u7ndTuMw6shw3coLlQa1tCvX5K0xUvDd6WpHc8YPL84ME+wIKz2TWy4VuurZNSRGSOhmZPVuGO8iDt0uOfSgx20CMR62vbR88lP1uyg19AQEBB7rLZq68XCKhom700h59TQObneYIL/ANNaeorDbGUVMO+4Onl63yY4uP8ABBlUBBKCEHWKCvdt/ipS+vR+6lQUigqzbDp5/SQ32LiwhtPUjzjO47+CCr0BAQEBAQEBAQEGz6P0JctRPMoPc1Azg+pcM5PyWDrKC5tPaYtNgpTBQR4L8dNK45e8jrJ/ggyqCvts7h+Q6IdZnP8AxQYzYxdTaKTVV1awSPoqATNYeAcWuJAJ85CDQtQ3iW9XqsussbYpKyQyvjb4IJ6hlBjkBAQfqKJ8sjY42l73HDWN4knzIL80NpKHT9paJGtdcZu+qZRz48o89jUGyoIQEBAQdYoK923+KlL69H7qVBSCD4V1DS11JLSVTBJBMN2Rh60FCaz0pU6euXQu76kly6km55Znkf2h1oNfQEBAQEBAQEBB0Vo9tC3TNtFFgwdAziPl47/Pn3soMwgEgDJ4BBQm0HUT7xqGfdl36KmPRUoHg4HN3tKDdqWg09o/ZtVS1lS5uoNS29zW0bu+G6495hob3uGv4lxQVEgICAgtrZbovuZjb7XsLal2e44XeS0jG+R2nqQWSghAQEEoIQdYoK923+KdL69H7qVBSCAgx98sVuvdA6ir2b8RIc0g4c1w62lBSGrdFXPTs2ZQJaKRxEFS38HdjkGuICAgICAgICC0NlOq6amt9Xba5+5HTNdVRvPyOG+Pr4hBY1outLdbdDX0uegnGW73P2oMBtI1DHatOywtdirrgYYAOzyz7GlBSNshZPcqWGRwaySVjXuPAAFwBJQbNtUuMFZrKqbTTNmpKVkVNA5hy3EcYB3T6coNQQEBBs2z7TwveoYo5R+iU/56o84b4LfaUF+ICCUBBCAgFB1igr3bf4qUvr0fupUFIIJQQg89xt9LcKGaiqmdJBO3de309Y84QatFso0k2nbHJHJI9pJ6XfLXEHqOOxBrt92NSb/SWSpBZ1wVJwR6Hgfig1m6bNdV22kkq56dkkEQ3pDE8PIHbjmg1ZAQEBAQS17m8jjPA+hBZmhNbUNo0fUR1Ug7pgmeKSE577ebvAZHIZyg1LWeq59R3GOpczoooowyKHng83H2lBr6AgICAgvXZlZPybpmKWRm7U1hM0h690+AP9vFBtyCEEoIQEBAQdYoK923+KlL69H7qVBSKCEEoCCEBBWW052sKCpNfS10rbQ/DdyI7vRnHEOx1HtQVXI9z3l7vCcclBCAgICD9RxvkeGMaXPccNaBkk+hBMsckMjopWlj2HD2OGCD2EFB+MILJ0dsWvF8tRuVZOKGKaPeoIyN50pI70u4jcaT7UFfXGhqbfX1FDVM3KmmkdFKzsc04KDzoCDJ6bs8t3vVLQx/4jx0h7GDi4/Ug6Oa1rWhrRhreDQOodSCUBAQEBAQEHWKCvdt/inS+vR+5lQUggICAgIJQfOeCGeF8M7GyQvGHscMgjzhBz9ra1222aiqqW3ytkpwc7o49GTzZn9lBgUBAQEH3oK6qoayKrpZTDUQu3opW8wQgsy8spNo+n3Xq3wCHVdsaG11viA/SYv85vIkj/p2IKsIIODwKDovYlq38r6c/JdQ4d2WrEbcnvnwHwHezwUGo7etINpa2HUlM383WnoqwAcBK1veu/fAQVEgILa2PaefDTT3qZuDUDoabI8gHvnD0kYQWQglBCAgICAgIOsUFe7b/FSl9ej91KgpBAQEBAQSg8N7irJrPWxUTzHVvheIHjmH7vBBzbOJRM8S56UE7+ee9njlB+EBAQEBBlNN6jumnbtDc7bJuTxcCD4L2HwmOHYUGc2gWu0OfSaisn/dl3aXyxN5U9Xzlh83PIQY3RGpptOalo7kxxELH7tUweVC7g8fxQdLagtdv1ZpSalY4SU9fAH0s444cRvRvHtwg5TuFDU0FdPRVLNyopnujlYepzThBldH6ZqL/d46ZgIp2YfVSfJjz+J5BB0DT00FNAyngYIoYhuxxt5ABB9EBAQEEoIQEBB1igr3bf4qUvr0fupUFIICAgICAg+VXJFHSyvmkEMTWHflJxujtyg5quLYW19Q2GXpoRI7o5vltzwd7UHnQEBAQEBBmrRfBFabhZ6ob9FWDpIs8eiqI+LJG9fHwT5igw2eKC/thWsPyhZ3afqHfpNtbvU5PlQOdyH+goNZ28aPFHco9RU4/M1zujq2gcpgODv3gPuQZbZTQW6HTDKmnw6qqHHut3lAtcQ1p9AQboghAQEBAQEBAQdYoK923+KdL69H7mVBSCAgICCUEIKf2pavrp7hPYYcw0lMQJ8HjKSA7j5hnkgr1AQEBAQEBAQEGd0TqGawamoLjHksjkDZ4wcb8T+D2/UUHT+obLRai0/UW+ZodFVRHoXO8l5GY3+w8UHLTqy+WKWotgmkpnwzgzRgkYlhJAKC49Ca0ZqOie2VvR3Cmx3Q0eC4Hk9v1cUG0oIQEBAQEBAQdYoK923eKdL69H7qVBSCAglBCAgIKH2nU5h1lXE/43RyD2sA/gg1VAQEBAQEBAQEHusNE+uvdBRs4vqKiKNv7zwEF3bQNq9VpbU9NaqCJlRS0cIFZG/gXFwG4A7iWlrR96CldR32qv15qrrVNYyeqcHOZGMNGBuj7gg2XZXf7barvLDVhwkr9yGGUcWg73Jw85xxQXWgICAgICAgIOsUFe7b/FSl9ej91KgpFBCAgICBkAZPAdqDnrXF1F01PX1LHb0Ik6OE/sR96PrxlBgkBAQEBAQEBAQbVstppJ9fWQNaXdHUtldjqbH3xcfRhB5doFeK/Wl5qQctdVPa0/sx94Puag19B6LdUimuFNUniIZWSEf6XAoOj7VdqC7ULK2gk6Wmkzuuxg5HAgg9iD2IIQEEoIQEAoOsUFe7bvFSl9ej9zKgpFBCAglBCDA66ugtulq+cO3ZXs6GH/XJ3v4ZKDntAQEBAQEBAQEH0p6aeok6KCN0khBIY0ZOGjJ+oBBZ+zyMaU0bd9Z1bQJ6mM0VpafKcScn/cB7AUFXSyOlkdI85e8lzj5zxKD8oCCy9jt0ubq6e2l+bfHCZAz5MheOvz5KC2EEIJQEEICAg6xQYbVOlrf