Группа авторов

Space Physics and Aeronomy, Ionosphere Dynamics and Applications


Скачать книгу

M., & Cowley, S. W. H. (1999). Comment on “A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electro‐ dynamics technique” by Ridley et al. Journal of Geophysical Research, 104, 4387–4391.

      86 Lockwood, M., & Morley, S. K. (2004). A numerical model of the ionospheric signatures of time‐varying magnetic reconnection: I. Ionospheric convection. Annals of Geophysics, 22, 73–91.

      87 Lockwood, M., Cowley, S. W. H., & Freeman, M. P. (1990). The excitation of plasma convection in the high‐latitude ionosphere. Journal of Geophysical Research, 95, 7961–7972.

      88 Lockwood, M., Moen, J., Cowley, S. W. H., Farmer, A. D., Lovhaug, U. P., Luhr, H. & Davda, V. N. (1993). Variability of dayside convection and motions of the cusp/cleft aurora. Geophysical Research Letters, 20, 1011–1014.

      89 Lockwood, M., Sandholt, P. E., Cowley, S. W. H., & Oguti, T. (1989). Interplanetary magnetic field control of dayside auroral activity and the transfer of momentum across the dayside magnetopause. Planetary and Space Science, 37, 1347.

      90 Lockwood, M., van Eyken, A. P., Bromage, B. J. I., Willis, D. M., & Cowley, S. W. H. (1986). Eastward propagation of a plasma convection enhancement following a southward turning of the interplanetary magnetic field. Geophysical Research Letters, 13, 72–76.

      91 Lu, G., Holzer, T. E., Lummerzheim, D., Ruohoniemi, J. M., Stauning, P., Troshichev, O., Newell, P. T., et al. (2002). Ionospheric response to the interplanetary magnetic field southward turning: Fast onset and slow reconfiguration. Journal of Geophysical Research, 107, A81153. doi: 10.1029/2001JA000324

      92 Lyons, L. R. (1985). A simple model for polar cap convection patterns and generation of auroras. Journal of Geophysical Research, 90, 1561.

      93 McPherron, R. L. (1970). Growth phase of magnetospheric substorms. Journal of Geophysical Research, 75, 5592–5599. doi: 10.1029/JA075i028p05592

      94 McPherron, R. L., Russell, C. T., & Aubry, M. (1973). Satellite studies of magnetospheric substorms on August 15, 1978: 9. Phenomenological model for substorms. Journal of Geophysical Research, 78, 3131–3149.

      95 McWilliams, K. A. (1997). A SuperDARN study of dayside field‐aligned current regions. MSc thesis, University of Saskatchewan, Saskatoon, Sask., Canada.

      96 McWilliams, K. A., Pfeifer, J. B., & McPherron, R. L. (2008). Steady magnetospheric convection selection criteria: implications of global SuperDARN convection measurements. Geophysical Research Letters, 35, L09102.

      97 Milan, S. E. (2004). Dayside and nightside contributions to the cross polar cap potential: Placing an upper limit on a viscous‐like interaction. Annals of Geophysics, 22, 3771–3777.

      98 Milan, S. E. (2013). Modeling Birkeland currents in the expanding/contracting polar cap paradigm. Journal of Geophysical Research Space Physics, 118. doi:10.1002/jgra.50393

      99 Milan, S. E. (2015). Sun et Lumière: Solar wind‐magnetosphere coupling as deduced from ionospheric flows and polar auroras. In D. Southwood et al. (Eds.), Magnetospheric plasma physics: The impact of Jim Dungey's research. Astrophysics and Space Science Proceedings 41, Springer. doi: 10.1007/978‐3‐319‐18359‐6_2, 2015

      100 Milan, S. E., Carter, J. A., Sangha, H., Laundal, K., Østgaard, N., Tenfjord, P., Reistad, J., et al. (2018a). Timescales of dayside and nightside field‐aligned current response to changes in solar wind‐magnetosphere coupling. Journal of Geophysical Research Space Physics, 123, in press.

      101 Milan, S. E., Clausen, L. B. N., Coxon, J. C., Carter, J. A., Walach, M.‐T., Laundal, K., Østgaard, N., et al. (2017). Overview of solar wind‐magnetosphere‐ionosphere‐atmosphere coupling and the generation of magnetospheric currents. Space Science Reviews, 206. doi: 10.1007/s11214‐017‐0333‐0

      102 Milan, S. E., Gosling, J. S., & Hubert, B. (2012). Relationship between interplanetary parameters and the magnetopause reconnection rate quantified from observations of the expanding polar cap. Journal of Geophysical Research, 117, A03226. doi:10.1029/2011JA017082

      103 Milan, S. E., Grocott, A., Forsyth, C., Imber, S. M., Boakes, P. D., & Hubert, B. (2009). A superposed epoch analysis of auroral evolution during substorm growth, onset and recovery: Open magnetic flux control of substorm intensity. Annals of Geophysics, 27, 659–668.

      104 Milan, S. E., Both solar wind-magnetosphere coupling and ring current intensity control of the size of the auroral oval, Geophys. Res. Lett., 36, L18101, doi: 10.1029/ 2009GL039997, 2009.

      105 Milan, S. E., Hubert, B., & Grocott, A. (2005). Formation and motion of a transpolar arc in response to dayside and nightside reconnection. Journal of Geophysical Research, 110, A01212. doi:10.1029/2004JA010835

      106 Milan, S. E., Imber, S. M., Carter, J. A., Walach, M.‐T., & Hubertv, B. (2016). What controls the local time extent of flux transfer events? Journal of Geophysical Research Space Physics, 121. doi: 10.1002/2015JA022012

      107 Milan, S. E., Lester, M., Cowley, S. W. H., & Brittnacher, M. (2000a). Convection and auroral response to a southward turning of the IMF: Polar UVI, CUTLASS, and IMAGE signatures of transient magnetic flux transfer at the magnetopause. Journal of Geophysical Research, 105, 15,741–15,755.

      108 Milan, S. E., Lester, M., Cowley, S. W. H., & Brittnacher, M. (2000b). Dayside convection and auroral morphology during an interval of northward interplanetary magnetic field. Annals of Geophysics, 18, 436–444.

      109 Milan, S. E., Lester, M., Cowley, S. W. H., Oksavik, K., Brittnacher, M., Greenwald, R. A., Sofko, G. et al. (2003). Variations in polar cap area during two substorm cycles. Annals of Geophysics, 21, 1121–1140.

      110 Milan, S. E., Provan, G., & Hubert, B. (2007). Magnetic flux transport in the Dungey cycle: A survey of dayside and nightside reconnection rates. Journal of Geophysical Research, 112, A01209. doi:10.1029/2006JA011642

      111 Milan, S. E., Walach, M.‐T., Carter, J. A., Sangha, H., & Anderson, B. J. (2018b). Substorm onset latitude and the steadiness of magnetospheric convection. Journal of Geophysical Research Space Physics, submitted.

      112 Morelli, J. P., et al. (1995). Radar observations of auroral zone flows during a multiple‐onset substorm. Annals of Geophysics, 13, 1144–1163. doi:10.1007/s00585‐995‐1144‐2

      113 Morley, S. K., & Lockwood, M. (2005). A numerical model of the ionospheric signatures of time‐varying magnetic reconnection: II. Measuring expansions in the ionospheric flow response. Annals of Geophysics, 23, 2501–2510.

      114 Morley, S. K., & Lockwood, M. (2006). A numerical model of the ionospheric signatures of time‐varying magnetic reconnection: III. Quasi‐instantaneous convection responses in the Cowley‐Lockwood paradigm. Annals of Geophysics, 24, 961–972. www.ann‐geophys.net/24/961/2006/

      115 Moses, J. J., Siscoe, G. L., Heelis, R. A., & Winningham, J. D. (1989). Polar cap deflation during magnetospheric substorms. Journal of Geophysical Research, 94, 3785.

      116 Nishida, A., Mukai, T., Yamamoto, T., Kokubun, S., & Maezawa, K. (1998). A unified model of the magnetotail convection in geomagnetically quiet and active times. Journal of Geophysical Research, 103(A3), 4409–4418.

      117 Nishida, A., Mukai, T., Yamamoto, T., Saito, Y., Kokubun, S., & Maezawa, K. (1995). Geotail observation of magnetospheric convection in the distant tail at 200 Re in quiet times. Journal of Geophysical Research, 100(A12), 23,663–23,675.

      118 Nishida, A., Yamamoto, T., Tsuruda, K., Hayakawa, H., Matsuoka, A., Kokubun, S., Nakamura, M., et al. (1994). Structure of the neutral sheet in the distant tail (X = 210 Re) in geomagnetically quiet times. Geophysical Research Letters, 21(25), 2951–2954.

      119 Parker, E. N. (1996). The alternative paradigm for magnetospheric physics. Journal of Geophysical Research, 101, 10587–10625.

      120 Pitkänen, T., Hamrin, M.,Kullen, A., Maggiolo, R., Karlsson, T., Nilsson, H., & Norqvist, P. (2016). Response of magnetotail twisting to variations in IMF By: A THEMIS case study