Группа авторов

Space Physics and Aeronomy, Ionosphere Dynamics and Applications


Скачать книгу

I. O., Donovan, E. F., & Samson, J. C. (2003). Observations of the phases of the substorm. Journal of Geophysical Research, 108, 1073. doi: 10.1029/2002JA009314, A2

      150 Walker, I. K., Moen, J., Kersley, L., & Lorentzen, D. A. (1999). On the possible role of cusp/cleft precipitation in the formation of polar‐cap patches. Annals of Geophysics, 17(10), 1298–1305. doi:10.1007/s00585‐999‐1298‐4

      151 Wang, B., Nishimura, Y., Lyons, L. R., Zou, Y., Carlson, H. C., Frey, H. U., & Mende, S. B. (2016b). Analysis of close conjunctions between dayside polar cap airglow patches and flow channels by all‐sky imager and DMSP: 3. Space science. Earth, Planets and Space 68(1), 150. doi:10.1186/s40623‐016‐0524‐z

      152 Wang, B., Nishimura, Y., Zou, Y., Lyons, L. R., Angelopoulos, V., Frey, H., & Mende, S. (2016a). Investigation of triggering of poleward moving auroral forms using satellite‐imager coordinated observations. Journal of Geophysical Research: Space Physics, 121, 10,929–10,941. doi: 10.1002/2016JA023128

      153 Weygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson, M. J., Gleisner, H., et al. (2011). Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalentcurrents with the North American and Greenland ground magnetometer arrays. Journal of Geophysical Research, 116, A03305. doi:10.1029/2010JA016177

      154 Wiltberger, M., et al. (2017). Effects of electrojet turbulence on a magnetosphere‐ionosphere simulation of a geomagnetic storm. Journal of Geophysical Research: Space Physics, 122, 5008–5027. doi: 10.1002/2016JA023700

      155 Wu, J., Knudsen, D. J., Gillies, D. M., Donovan, E. F., & Burchill, J. K. (2017). Swarm observation of field‐aligned currents associated with multiple auroral arc systems. Journal of Geophysical Research: Space Physics, 122, 10,145–10,156. doi:10.1002/2017JA024439

      156 Xing, Z. Y., Yang, H. G., Han, D. S., Wu, Z. S., Hu, Z. J., Zhang, Q. H., et al. (2012). Poleward moving auroral forms (PMAFs) observed at the Yellow River Station: A statistical study of its dependence on the solar wind conditions. Journal of Atmospheric and Solar‐Terrestrial Physics, 86, 25–33. doi:10.1016/j.jastp.2012.06.004

      157 Yiğit, E., & Ridley, A. J. (2011). Effects of high‐latitude thermosphere heating at various scale sizes simulated by a nonhydrostatic global thermosphere‐ionosphere model. Journal of Atmospheric and Terrestrial Physics, 73, 592–600. doi:10.1016/j.jastp.2010.12.003

      158 Yin, P., Mitchell, C.‐N., Spencer, P., McCrea, I., & Pedersen, T. (2008). A multi‐diagnostic approach to understanding high‐latitude plasma transport during the Halloween 2003 storm. Annals of Geophysics, 26, 2739–2747. doi:10.5194/angeo‐26‐2739‐2008

      159 Zettergren, M., Lynch, K., Hampton, D., Nicollsv M., Wright, B., Conde, M., Moen, J., et al. (2014). Auroral ionospheric F region density cavity formation and evolution: MICA campaign results. Journal of Geophysical Research: Space Physics, 119, 3162–3178. doi: 10.1002/2013JA019583

      160 Zhang, B., Brambles, O., Lotko, W., Dunlap‐Shohl, W., Smith, R., Wiltberger, M., & Lyon, J. (2013a). Predicting the location of polar cusp in the Lyon‐Fedder‐Mobarry global magnetosphere simulation. Journal of Geophysical Research: Space Physics, 118, 6327–6337. doi:10.1002/jgra.50

      161 Zhang, Q. ‐H., et al. (2013b). Direct observations of the evolution of polar cap ionization patches. Science, 339, 1597–1600. doi:10.1126/science.1231487.565

      162 Zhang, Q.‐H., et al. (2017). Polar cap hot patches: Enhanced density structures different from the classical patches in the ionosphere. Geophysical Research Letters, 44, 8159–8167. doi: 10.1002/2017GL073439

      163 Zhu, Q., et al. (2018). Small‐ and mesoscale variabilities in the electric field and the particle precipitation and their impacts on Joule heating. Submitteed to Journal of Geophysical Research.

      164 Zou, Y., et al. (2016). Localized field‐aligned currents in the polar cap associated with airglow patches. Journal of Geophysical Research: Space Physics, 121, 10,172–10,189. doi: 10.1002/2016JA022665

      165 Zou, Y., Nishimura, Y., Lyons, L. R., & Shiokawa, K. (2017). Localized polar cap precipitation in association with nonstorm time airglow patches. Geophysical Research Letters, 44, 609–617. doi: 10.1002/2016GL071168

      166 Zou, Y., Nishimura, Y., Lyons, L. R., Donovan, E. F., Ruohoniemi, J. M., Nishitani, N., & McWilliams, K. A. (2014). Statistical relationships between enhanced polar cap flows and PBIs. Journal of Geophysical Research: Space Physics, 119, 151–162. doi: 10.1002/2013JA019269

      167 Zou, Y., Nishimura, Y., Lyons, L. R., Donovan, E. F., Shiokawa, K., Ruohoniemi, J. M., McWilliams, K. A., et al. (2015b). Polar cap precursor of nightside auroral oval intensifications using polar cap arcs. Journal of Geophysical Research: Space Physics, 120, 10,698–10,711. doi: 10.1002/2015JA021816

      168 Zou, Y., Nishimura, Y., Lyons, L. R., Shiokawa, K., Donovan, E. F., Ruohoniemi, J. M., McWilliams, K. A., et al. (2015a). Localized polar cap flow enhancement tracing using airglow patches: Statistical properties, IMF dependence, and contribution to polar cap convection. Journal of Geophysical Research: Space Physics, 120, 4064–4078. doi: 10.1002/2014JA020946

       Shasha Zou1, Gareth W. Perry2,3, and John C. Foster4

       1 Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA

       2 Department of Physics and Astronomy, University of Calgary, Calgary, Canada

       3 Center for Solar‐Terrestrial Research, New Jersey Institute of Technology, Newark, NJ, USA

       4 Massachusetts Institute of Technology Haystack Observatory, Westford, MA, USA

      ABSTRACT

      In the polar cap region, high‐density ionospheric structures, such as the large‐scale tongue‐of‐ionization and mesoscale polar cap patches, are frequently observed, which are of significant space weather concerns. In this chapter, recent progress on these polar cap high‐density ionospheric structures is reviewed with an emphasis on the polar cap patch. Topics include the statistical occurrence rate of patches, plasma structure and characteristics inside patches, dynamic horizontal and vertical transport of high‐density ionospheric structures, as well as the mechanisms and variability of optical patch emissions. For each topic, future works are envisioned following the progress reviews.

      Ionospheric density varies significantly and affects the propagation of radio signals that pass through the ionosphere or are reflected by it. One example of these effects is the loss of phase lock and range errors in Global Navigation Satellite Systems (GNSS) signals. Because our modern society increasingly relies on ground‐to‐ground and ground‐to‐space communications and navigation, understanding the sources of the ionospheric density variability and monitoring its dynamics during space weather events is of great practical importance (e.g., Jin et al., 2014, 2017; Moen et al., 2013; Zhang et al., 2018).

      Due to the geometry of the Earth's magnetic field, the solar wind has direct access to the high‐latitude polar cap region because the magnetic field lines there are open. The convection electric fields in the solar wind map directly down to the polar cap along the equipotential magnetic field lines (Lyons & Williams, 1984). The shape and size of the polar cap change considerably with varying solar wind and the polarity and magnitude of interplanetary magnetic field (IMF). Typically, the open‐closed field line boundary (OCB) of the polar cap expands to lower latitudes during southward IMF condition and retreats back to higher latitudes during northward IMF condition. Particles in the solar wind and magnetosheath can move along the magnetic field line down to the polar cap ionosphere and form the polar rain (Fairfield &