Max Diem

Quantum Mechanical Foundations of Molecular Spectroscopy


Скачать книгу

normal x right-parenthesis plus StartFraction 2 italic m upper E Over normal h with stroke squared EndFraction normal psi left-parenthesis x right-parenthesis equals 0"/>

      When this differential equation is solved without the previously used boundary conditions

      (2.29)normal psi left-parenthesis x right-parenthesis equals 0 a t x equals 0 and a t x equals normal upper L

      the new solutions represent a particle–wave that travels along the positive or negative x‐direction. The most general solution of the differential Eq. (2.23) is

      where b is a constant.

      (2.49)StartFraction d squared Over normal d x squared EndFraction normal psi left-parenthesis x right-parenthesis equals StartFraction d squared Over normal d x squared EndFraction upper A normal e Superscript plus-or-minus italic i b x Baseline equals minus-or-plus b squared upper A normal e Superscript plus-or-minus italic i b x Baseline equals minus-or-plus b squared normal psi left-parenthesis x right-parenthesis

      with

      or

      (2.52)upper E equals StartFraction p squared Over 2 m EndFraction equals StartFraction h squared Over 2 m normal lamda squared EndFraction

      (2.53)normal psi Subscript plus-or-minus Baseline left-parenthesis x right-parenthesis equals upper A normal e Superscript plus-or-minus StartFraction 2 normal pi italic i x Over normal lamda EndFraction

      carrying a momentum

      (2.54)p equals plus-or-minus StartFraction h Over normal lamda EndFraction equals plus-or-minus normal h with stroke bold-italic k

      into the positive or negative x‐direction. k is the wave vector defined in Eq. (1.6).

      2.4.3 The Particle in a Box with Finite Energy Barriers

      The potential energy for this case is written as

      (2.55)upper V left-parenthesis x right-parenthesis equals 0 for minus StartFraction upper L Over 2 EndFraction less-than-or-equal-to x less-than-or-equal-to plus StartFraction upper L Over 2 EndFraction

      and

      (2.56)upper V left-parenthesis x right-parenthesis equals upper V 0 for x less-than minus StartFraction upper L Over 2 EndFraction and x greater-than StartFraction upper L Over 2 EndFraction

      (Notice that the boundaries of the box were shifted from 0 to L to −L/2 to +L/2 for symmetry reasons that will be taken up again in Section 3.2.) The Schrödinger equation is written in two parts: Inside the box, where the potential energy is zero, the same equation holds that was used earlier:

      (2.23)StartFraction d squared Over normal d x squared EndFraction normal psi left-parenthesis x right-parenthesis plus StartFraction 2 italic m upper E Over normal h with stroke squared EndFraction normal psi left-parenthesis x right-parenthesis equals 0

      Outside the box, the Schrödinger equation is

      (2.57)StartFraction d squared Over normal d x squared EndFraction normal psi left-parenthesis x right-parenthesis plus StartFraction 2 m left-parenthesis upper V 0 minus upper E right-parenthesis Over normal h with stroke squared EndFraction normal psi left-parenthesis x right-parenthesis equals 0

Schematic illustration of the (a) Particle in a box with infinite potential energy barrier. (b) Particle in a box with infinite potential energy barrier.

      (2.58)normal psi left-parenthesis x right-parenthesis equals upper A normal e Superscript minus alpha x Baseline for x greater-than upper L slash 2 and

      (2.59)normal psi left-parenthesis x right-parenthesis equals upper A normal e Superscript alpha x Baseline for x less-than upper L slash 2

      where

      (2.60)alpha equals StartRoot StartFraction 2 m left-parenthesis upper V 0 minus upper E right-parenthesis Over normal h with stroke squared EndFraction EndRoot

      For x greater-than StartFraction upper L Over 2 EndFraction comma normal psi left-parenthesis x right-parenthesis is an exponential decay function, and for x less-than StartFraction upper L Over 2 EndFraction comma normal psi left-parenthesis x right-parenthesis is an exponential growth function. This