Yu Lan

Computational Methods in Organometallic Catalysis


Скачать книгу

Lei, A., Shi, W., Liu, C. et al. (2016). Oxidative Cross‐Coupling Reactions. Wiley‐VCH.

      54 54 Twilton, J., Le, C., Zhang, P. et al. (2017). The merger of transition metal and photocatalysis. Nature Reviews Chemistry 1: 0052.

      55 55 Mayer, J.M. (2011). Understanding hydrogen atom transfer: from bond strengths to Marcus theory. Accounts of Chemical Research 44: 36–46.

      56 56 Soleilhavoup, M. and Bertrand, G. (2015). Cyclic (alkyl)(amino)carbenes (CAACs): stable carbenes on the rise. Accounts of Chemical Research 48: 256–266.

      57 57 Tellis, J.C., Kelly, C.B., and Primer, D.N. (2016). Single‐electron transmetalation via photoredox/nickel dual catalysis: unlocking a new paradigm for sp3–sp2 cross‐coupling. Accounts of Chemical Research 49 (7): 1429–1439.

      58 58 Houk, K.N. (1975). Frontier molecular‐orbital theory of cycloaddition reactions. Accounts of Chemical Research 8: 361–369.

      59 59 Mcleod, D., Thogersen, M.K., Jessen, N.I. et al. (2019). Expanding the frontiers of higher‐order cycloadditions. Accounts of Chemical Research 52: 3488–3501.

      60 60 Li, J., Liu, T., Chen, Y. et al. (2012). Aminocatalytic asymmetric Diels–Alder reactions via HOMO activation. Accounts of Chemical Research 45 (9): 1491–1500.

      61 61 Afewerki, S. and Cordova, A. (2016). Combinations of aminocatalysts and metal catalysts: a powerful cooperative approach in selective organic synthesis. Chemical Reviews 116 (22): 13512–13570.

      62 62 Zeise, W.C. (1831). Von der Wirkung zwischen Platinchlorid und Alkohol, und von den dabei entstehenden neuen Substanzen. Annual Physical Chemistry (in German) 97 (4): 497–541.

      63 63 Didier, A. (2007). History of organometallic chemistry. In: Organometallic Chemistry and Catalysis, 5–20. Springer‐Verlag Berlin Heidelberg.

      64 64 Frankland, E. (1849). Notiz über eine neue Reihe organischer Körper, welche Metalle, Phosphor u. s. w. enthalten. Liebigs Annalen der Chemie und Pharmacie 71 (2): 213–216.

      65 65 Löwig, C. (1853). Ueber Methplumbäthyl. Annalen der Chemie und Pharmacie 88: 318–322.

      66 66 Hallwachs, W. and Schafarik, A. (1859). Ueber die Verbindungen der Erdmetalle mit organischen Radicalen. Liebigs Annalen der Chemie und Pharmacie 109: 207.

      67 67 Grignard, V. (1900). Sur quelques nouvelles combinaisons organométalliques du magnèsium et leur application à des synthèses d'alcools et d'hydrocarbures. Comptes Rendus 130: 1322.

      68 68 Frankland, E. (1859). Researches on Organo‐metallic Bodies. Philosophical Transactions of the Royal Society of London 149: 401–415.

      69  69 Mond, L., Langer, C., and Quincke, F. (1890). Action of carbon monoxide on nickel. Journal of the Chemical Society, Faraday Transactions 57: 749–753.

      70 70 Mond, L. and Langer, C. (1891). On iron carbonyls. Journal of the Chemical Society, Faraday Transactions 59: 1090–1093.

      71 71 Werner, A. (1893). Beitrag zur Konstitution anorganischer Verbindungen. Anorganic Chemistry 3: 267.

      72 72 Hein, F. (1919). Notiz über Chromorganoverbindungen. Chemische Berichte 52: 195.

      73 73 Kealy, T.J. and Pauson, P.L. (1951). A new type of organo‐iron compound. Nature 168 (4285): 1039–1040.

      74 74 Fischer, E.O. and Maasböl, A. (1964). On the existence of a tungsten carbonyl carbene complex. Angewandte Chemie (International Edition in English) 3 (8): 580–581.

      75 75 Ziegler, K., Holzkamp, E., Breil, H. et al. (1955). Das Mülheimer Normaldruck‐Polyäthylen‐Verfahren. Angewandte Chemie (International Edition in English) 67: 541–547.

      76 76 Natta, G. (1955). Une nouvelle classe de polymeres d'α‐olefines ayant une régularité de structure exceptionnelle. Journal of Polymer Science 16 (82): 143–154.

      77 77 Smidt, J. and Hafner, W. (1959). Eine Reaktion von Palladiumchlorid mit Allylalkohol. Angewandte Chemie (International Edition in English) 71: 284.

      78 78 Ruddick, J.D. and Shaw, B.L. (1969). Transition metal–carbon bonds. Part XXI. Methyl derivatives of platinum(II) and platinum(IV) containing dimethylphenylarsine as ligand. Journal of the American Chemical Society 123 (13): 2964–2969.

      79 79 Wilkinson, G. (1974). The long search for stable transition metal alkyls. Science 185: 109–112.

      80 80 Heck, R.F. and Nolley, J.P. (1972). Palladium‐catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. The Journal of Organic Chemistry 37 (14): 2320–2322.

      81 81 Tamao, K., Sumitani, K., and Kumada, M. (1972). Selective carbon–carbon bond formation by cross‐coupling of Grignard reagents with organic halides. Catalysis by nickel–phosphine complexes. Journal of the American Chemical Society 94 (12): 4374–4376.

      82 82 Miyaura, N., Yamada, K., and Suzuki, A. (1979). A new stereospecific cross‐coupling by the palladium‐catalyzed reaction of 1‐alkenylboranes with 1‐alkenyl or 1‐alkynyl halides. Tetrahedron Letters 20 (36): 3437–3440.

      83 83 King, A.O., Okukado, N., and Negishi, E.‐i. (1977). Highly general stereo‐, regio‐, and chemo‐selective synthesis of terminal and internal conjugated enynes by the Pd‐catalysed reaction of alkynylzinc reagents with alkenyl halides. Journal of the Chemical Society, Chemical Communications 19: 683.

      84 84 Milstein, D. and Stille, J.K. (1978). A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. Journal of the American Chemical Society 100: 3636–3638.

      85 85 Sonogashira, K., Tohda, Y., and Hagihara, N. (1975). A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Letters 16 (50): 4467–4470.

      86  86 Vineyard, B.D., Knowles, W.S., Sabacky, M.J. et al. (1977). Asymmetric hydrogenation. Rhodium chiral bisphosphine catalyst. Journal of the American Chemical Society 99 (18): 5946–5952.

      87 87 Qi, X., Liu, S., and Lan, Y. (2016). Computational studies on an aminomethylation precursor: (Xantphos)Pd(CH2NBn2)+. Organometallics 35: 1582–1585.

      88 88 Li, Y., Liu, S., Qi, Z. et al. (2015). The mechanism of N—O bond cleavage in rhodium‐catalyzed C—H bond functionalization of quinoline N‐oxides with alkynes: a computational study. Chemistry – A European Journal 21: 10131–10137.

      2.1 Introduction of Computational Methods

      2.1.1 The History of Quantum Chemistry Computational Methods

      The core requirement of quantum chemistry is the solution of the time‐independent Schrödinger equation

ModifyingAbove upper H With Ì‚ normal upper Psi equals upper E normal upper Psi

      where Ĥ is the Hamiltonian operator, Ψ is the wavefunction for all of the nuclei and electrons, and E is the energy associated with this wavefunction. The Hamiltonian contains all operators that describe the kinetic and potential energy of the molecule at hand. Schrödinger equation is the basis of quantum mechanics, which was proposed by E. Schrödinger, an Austrian theoretical physicist, in 1926 [1–3]. It describes the law of the state of microparticles changing with time. The state of microsystem can be described by wavefunctions, whose differential equation is Schrödinger equation. It means that the wavefunctions can be solved by the equation, when the initial conditions and boundary conditions are given.

      The Hamiltonian operator Ĥ can be broken into two operators

ModifyingAbove upper H With Ì‚ equals upper T plus upper V

      Those two operators represent kinetic energy (T) and