Группа авторов

Space Physics and Aeronomy, Space Weather Effects and Applications


Скачать книгу

seemed clear that there was some type of significant coupling between Sun and Earth (including the generation of aurora) and the telegraph systems. But no authorities had any insight of what such couplings might be. Debate waged in the scientific and engineering literatures for several decades in the late 19th century. Indeed, an authority with the eminence of Lord Kelvin (William Thomson), whose analysis work was key in the implementation of the first trans‐Atlantic cable, argued in his presidential address to the Royal Society in 1892 that such Sun–Earth coupling was not physically possible (Kelvin, 1892).

      Since the days of the advent of the electrical telegraph about 170 years ago, human technologies have greatly expanded in type and in purpose for civilian, commercial, and national security uses. Many of these important contemporary technology developments are illustrated in the figure. These depicted elements, relied on heavily by current society, must by necessity take into account phenomena and processes in Sun and near‐Earth space for their design, implementation, and ultimate successful operations. Since the time of the telegraph, several additional technologies have developed that use long conductors and are therefore susceptible to induced ground currents. These include electrical grids, pipelines, and telephony, both continental and transoceanic.

image

      This volume was designed to provide a topical discussion of current day technologies and how they are affected by solar and terrestrial space processes. Without these technologies, contemporary life in civil, commercial, and national security realms would be very different, and indeed impossible. Access to space has also meant that humans can now live, with appropriate support systems, above the sensible atmosphere. Thus, a closely related topic, also covered in this volume, involves the many issues related to human survival in the space radiation environment inside and outside Earth’s magnetosphere. These issues deserve serious consideration prior to the planning and execution of projects involving a significant human presence in interplanetary space.

      1 Barlow, W. H. (1849). On the spontaneous electrical currents observed in the wires of the electric telegraph. Proc. Royal Soc., 139(61), 1849.

      2 Kelvin, Lord W. T. (1892). Nature, 47(109).

      3 Prescott, G. B. (1866). History, theory, and practice of the electric telegraph. Boston: Ticknor & Fields.

       Daniel N. Baker1 and Michael Bodeau2

       1 Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado, US

       2 Northrup Grumman Aerospace Systems, Redondo Beach, California, USA (ret.)

      ABSTRACT

      Exposure of space systems to solar energetic particles, galactic cosmic rays, and radiation belt fluxes can cause temporary operational anomalies, damage critical electronics, degrade solar arrays, and blind optical systems such as imagers and star trackers. Moreover, intense solar particle events present a significant radiation hazard for astronauts during the high‐latitude segment of the International Space Station orbit as well as for future human exploration of the Moon and Mars. In addition to such direct effects as spacecraft anomalies, a thorough assessment of the impact of space radiation on present‐day space operations must include the collateral effects of space‐weather‐driven technology failures. For example, space radiation can degrade and, during severe events, completely incapacitate various communication and reconnaissance platforms. A complete picture of the impact of space radiation must include both direct as well as collateral effects of incapacitation on susceptible space structures and systems. It is also imperative that we as a technological society develop a truly operational understanding of space radiation in which the benefits of accurate forecasts are clearly established.

      Space systems on which modern society depends mostly operate in the region from altitudes of a few hundred km to ~40,000 km above Earth’s surface. This region is filled with various populations of energetic particles. The fact that the Earth is surrounded by belts of very energetic protons and electrons was the first major discovery of the space age in 1958 (see Van Allen et al., 1958, 1959). From the initial realization that the terrestrial magnetic field could “trap” high‐energy particles, today there is a much more complete understanding of what are now called the Van Allen radiation belts. There has long been awareness of high‐energy solar and galactic cosmic rays as well.

      This chapter is intended to provide a brief overview of space radiation sources and their effects. Related impacts are treated in the companion chapter by Bodeau and Baker (chapter 2, this volume). A second goal of this chapter is to describe from an operational perspective the implications of radiation damage to systems in various parts of the geospace domain. In providing such a brief survey, the goal is to characterize in a succinct way the increasing importance of radiation damage on emerging technological systems.

Schematic illustration of a modern-day view of the Earth’s radiation belts as observed by the Van Allen Probes mission.