target="_blank" rel="nofollow" href="#imgcee2.jpg"/> = 0,4, ρ = 1,228 кг/м3, М = 0,65, ω = 20 рад/с)
Таблица 5.24. Абсолютная погрешность измерения осевой скорости движения НВ вертолета Ми-8 при совместном измерении с полной аэродинамической силой НВ и продольной скоростью его движения (в м/с) (СR = 0,02,
Глава VI. Измерение веса вертолета на переходных режимах
6.1. Влияние перегрузок на изменение тяги несущего винта вертолета на переходных режимах полета
Выше рассматривались вопросы об исследовании связи между коэффициентом перепада давления, измеряемого в определенной точке лопасти несущего винта вертолета, и коэффициентом подъемной силы лопасти Су, а также тягой Т и весом вертолета, совершающего установившийся горизонтальный полет, т. е. при отсутствии перегрузок, действующих на него. При допущении о малости углов наклона оси конуса вращения несущего винта вес вертолета G уравновешивается тягой Т0 несущего винта при установившемся полете вертолета, т. е. G = Т0, при этом измерительная система, использующая функциональную связь между коэффициентом перепада давления
регистрирует «истинный» вес вертолета.
В общем случае вертолет совершает неустановившийся полет, что вызывает появление перегрузок, действующих на него. Парирование возмущений вертолета либо, наоборот, создание перегрузок (для выполнения необходимого маневра) пилот осуществляет путем изменения вектора тяги несущего винта как по величине, так и по направлению. В этом случае вес вертолета уже не равен силе тяги несущего винта. Так, при действии только вертикальной перегрузки nу ≠ 1 (nх = 0 и nz = 0) потребная тяга несущего винта возрастает в nу раз, а система измерения веса зарегистрирует вес вертолета, превышающий «истинный» в nу раз.
Таким образом, для оценки погрешности измерения веса вертолета на переходных или неустановившихся режимах полета необходимо определить приращение тяги несущего винта (в предположении малости углов наклона оси конуса НВ):
ΔG = ΔT = T – T0 = f(nx, ny, nz, εx, εy, εz,…), (6.1)
где nx, ny, nz – перегрузки, действующие на вертолет при неустановившемся полете; εx, εy, εz – угловые ускорения вертолета; Т – тяга несущего винта при неустановившемся полете; Т0 – тяга несущего винта при установившемся полете.
Вертолет будем рассматривать как свободное твердое тело. Для однозначного определения его движения необходимо знать движение центра масс вертолета и движение вертолета относительно его центра масс. Поэтому приведем в общем виде систему динамических уравнений движения центра масс и движения вертолета относительно центра масс:
где
Vx, Vy, Vz – скорости движения центра масс;
Конец ознакомительного фрагмента.
Текст предоставлен